Skip to main content
Log in

Study on the dynamical characteristics and experimental validation for liquid sloshing in a common bulkhead tank

共底贮箱内液体晃动动力学特性研究及实验验证

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

In this paper, the dynamic characteristics of the liquid slosh in the common bulkhead tanks are investigated by the numerical method, experimental method, and equivalent mechanical model. Research results show that the first slosh frequency increases with the increase of liquid depth ratio. Nevertheless, the second slosh frequency decreases with the increase of the liquid depth ratio. In addition, two examples are presented to validate the improved moving pulsating ball model and the results are well in agreement with the numerical and experimental results. Furthermore, the complicated multi-modal or higher order modal characters of the nonlinear liquid sloshing in common bulkhead (CBH) tank are investigated by computational fluid dynamics (CFD), and it is shown that the higher order mode patterns can still appear obviously under strong excitation. Finally, the rotary sloshing and symmetrical rotary sloshing phenomenon in the CBH tank is revealed experimentally and it was found that rotary sloshing would become unstable and evolves into the symmetrical rotary sloshing due to value changes of excitation amplitude and excitation frequency. This symmetrical rotary sloshing cycle would start intermittently at a specific rhythm depended on the frequency of the excitation.

摘要

本文通过数值方法、实验方法和等效力学模型方法研究了共底贮箱内液体晃动的动力学特性. 研究结果表明, 一阶晃动频率随 着充液比的增加而增大. 然而, 二阶晃动频率随着充液比的增加而减小. 通过两个算例来验证改进的移动脉动球模型, 其结果与数值和 实验结果非常吻合. 此外, 通过CFD研究了CBH槽内非线性液体晃动的复杂多模态或高阶模态特征, 结果表明, 在强迫激励下能明显观 察到高阶晃动模态. 最后, 通过实验揭示了共底贮箱内的旋转晃动和对称旋转晃动现象. 发现由于激励振幅和激励频率的数值变化, 旋 转晃动会变得不稳定, 并发展为对称旋转晃动. 对称旋转晃动将以特定的节奏间歇性地开始, 这取决于激励的频率.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. R. A. Ibrahim, Liquid slosh dynamics: Theory and applications (Cambridge Univ. Press, Cambridge, 2005).

    Book  Google Scholar 

  2. F. Dodge, The New Dynamic Behavior of Liquids in Moving Containers, NASA Rept. SP-106, San Antonio, 2000.

    Google Scholar 

  3. H. Baoyin, J. Li, Y. Gao, and Z. Wang, Damping computation of liquid sloshing in containers aboard spacecraft, Acta Mech. Sin. 19, 189 (2003).

    Article  ADS  Google Scholar 

  4. A. Colagrossi, and M. Lavagna, Integrated vibration suppression attitude control for flexible spacecrafts with internal liquid sloshing, Multibody Syst. Dyn. 51, 123 (2021).

    Article  MathSciNet  Google Scholar 

  5. S. Chen, L. Duan, and Q. Kang, Study on propellant management device in plate surface tension tanks, Acta Mech. Sin. 37, 1498 (2021).

    Article  ADS  CAS  Google Scholar 

  6. J. W. Hartwig, Propellant management devices for low-gravity fluid management: Past, present, and future applications, J. Spacecraft Rockets 54, 808 (2017).

    Article  ADS  CAS  Google Scholar 

  7. W. J. Wu, B. Z. Yue, and H. Huang, Coupling dynamic analysis of spacecraft with multiple cylindrical tanks and flexible appendages, Acta Mech. Sin. 32, 144 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  8. Z. Zhou, and H. Huang, Constraint surface model for large amplitude sloshing of the spacecraft with multiple tanks, Acta Astronaut. 111, 222 (2015).

    Article  ADS  Google Scholar 

  9. B. Szelinski, H. Lange, C. Röttger, H. Sacher, S. Weiland, and D. Zell, Development of an innovative sandwich common bulkhead for cryogenic upper stage propellant tank, Acta Astronaut. 81, 200 (2012).

    Article  ADS  Google Scholar 

  10. A. Rawat, V. A. Matsagar, and A. K. Nagpal, Numerical study of base-isolated cylindrical liquid storage tanks using coupled acoustic-structural approach, Soil Dyn. Earthquake Eng. 119, 196 (2019).

    Article  Google Scholar 

  11. W. Wang, Z. Guo, Y. Peng, and Q. Zhang, A numerical study of the effects of the T-shaped baffles on liquid sloshing in horizontal elliptical tanks, Ocean Eng. 111, 543 (2016).

    Article  Google Scholar 

  12. C. S. Javier, M. C. Jon, and G. L. Miguel, Computational scaling of SPH simulations for violent sloshing problems in aircraft fuel tanks, Acta Mech. Sin. 39, 722051 (2023).

    Article  MathSciNet  Google Scholar 

  13. L. Battaglia, E. J. López, M. A. Cruchaga, M. A. Storti, and J. D’Elía, Mesh-moving arbitrary Lagrangian-Eulerian three-dimensional technique applied to sloshing problems, Ocean Eng. 256, 111463 (2022).

    Article  Google Scholar 

  14. C. Yang, R. Niu, and P. Zhang, Numerical analyses of liquid slosh by Finite volume and Lattice Boltzmann methods, Aerosp. Sci. Tech. 113, 106681 (2021).

    Article  Google Scholar 

  15. A. E. P. Veldman, J. Gerrits, R. Luppes, J. A. Helder, and J. P. B. Vreeburg, The numerical simulation of liquid sloshing on board spacecraft, J. Comput. Phys. 224, 82 (2007).

    Article  ADS  MathSciNet  Google Scholar 

  16. W. W. Zhang, and B. R. Noack, Artificial intelligence in fluid mechanics, Acta Mech. Sin. 37, 1715 (2021).

    Article  ADS  MathSciNet  Google Scholar 

  17. S. L. Brunton, Applying machine learning to study fluid mechanics, Acta Mech. Sin. 37, 1718 (2021).

    Article  ADS  Google Scholar 

  18. J. Lü, S. Wang, and T. Wang, Coupling dynamic analysis of a liquid-filled spherical container subject to arbitrary excitation, Acta Mech. Sin. 28, 1154 (2012).

    Article  ADS  MathSciNet  Google Scholar 

  19. P. Gasbarri, M. Sabatini, and A. Pisculli, Dynamic modelling and stability parametric analysis of a flexible spacecraft with fuel slosh, Acta Astronaut. 127, 141 (2016).

    Article  ADS  Google Scholar 

  20. M. Navabi, A. Davoodi, and M. Reyhanoglu, Modeling and control of a nonlinear coupled spacecraft-fuel system, Acta Astronaut. 162, 436 (2019).

    Article  ADS  Google Scholar 

  21. M. Nan, L. Junfeng, and W. Tianshu, Equivalent mechanical model of large-amplitude liquid sloshing under time-dependent lateral excitations in low-gravity conditions, J. Sound Vib. 386, 421 (2017).

    Article  ADS  Google Scholar 

  22. F. Liu, B. Yue, B. Ma, and C. Feng, Wave-based attitude control of in-orbit spacecraft with large-amplitude slosh, J. Vib. Control (2022).

    Google Scholar 

  23. L. Feng, Y. Baozeng, A. K. Banerjee, T. Yong, W. Wenjun, and L. Zhengyong, Large motion dynamics of in-orbit flexible spacecraft with large-amplitude propellant slosh, J. Guidance Control Dyn. 43, 438 (2020).

    Article  ADS  Google Scholar 

  24. J. P. B. Vreeburg, Dynamics and control of a spacecraft with a moving pulsating ball in a spherical cavity, Acta Astronaut. 40, 257 (1997).

    Article  ADS  Google Scholar 

  25. M. Deng, and B. Yue, Attitude tracking control of flexible spacecraft with large amplitude slosh, Acta Mech. Sin. 33, 1095 (2017).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  26. L. Yu, Y. Baozeng, and M. Bole, Improved moving pulsating ball equivalent model for large-amplitude liquid slosh, AIAA J. 60, 5004 (2022).

    Article  ADS  Google Scholar 

  27. D. Hernandez-Hernandez, T. Larkin, N. Chouw, and Y. Banide, Experimental findings of the suppression of rotary sloshing on the dynamic response of a liquid storage tank, J. Fluids Struct. 96, 103007 (2020).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The work was supported by the National Natural Science Foundation of China (Grant Nos. 12132002 and 11772049).

Author information

Authors and Affiliations

Authors

Contributions

Bole Ma: Conceptualization, Methodology, Software, Validation, Formal analysis, Writing — original draft. Baozeng Yue: Resources, Writing — review & editing, Supervision, Project administration, Funding acquisition. Feng Liu: Writing — review & editing. Yu Lu: Validation. Cuicui Liu: Investigation. Xiaodong Guan: Supervision.

Corresponding author

Correspondence to Baozeng Yue  (岳宝增).

Ethics declarations

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, B., Yue, B., Liu, F. et al. Study on the dynamical characteristics and experimental validation for liquid sloshing in a common bulkhead tank. Acta Mech. Sin. 39, 523127 (2023). https://doi.org/10.1007/s10409-023-23127-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10409-023-23127-x

Navigation