Skip to main content
Log in

Influence of chemistry and temperature on mechanical behavior and deformation mechanisms of refractory high-entropy alloys: an integrated simulation-modeling analysis

基于模拟-建模研究化学与温度对难熔高熵合金力学行为和变形机制的影响

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

The equiatomic refractory high-entropy alloys (RHEAs) exhibit the excellent performance at high temperatures, breaking through the upper limits of operating temperatures in the conventional high-temperature alloys. Here, the influences of chemistry and temperature on the deformation mechanisms of the equiatomic MoNbTaW RHEAs are investigated, using the large-scale atomic simulations. According to the microstructure evolution, a microstructure-based constitutive model is established to study the effects of the multiple strengthening mechanisms. The results show the jagged sharp fluctuations of the flow stress with the strain after the strain hardening. The increasing temperature reduces the strain-hardening rate and the amplitude of fluctuations in the flow stress, due to the reduction of the solute concentration for the annealed structure. The deformation twinning plays a certain role in the deformation mechanism in comparison with dislocation, and the local deformation is further accommodated via the dislocation-based plasticity, and amorphous nucleation in the grains. The existence of the ordered structure affects the stress and strain partition dependent upon the mechanical properties. The solid solution strengthening and grain boundary strengthening contribute considerably to the flow stress, and twinning strengthening contributes relatively little to the flow stress. Our atomic simulation and model give valuable insights into the deep understanding of chemistry and temperature related to the deformation behaviour of RHEAs.

摘要

难熔高熵合金在高温下表现出优异的性能, 突破了传统高温合金的工作温度上限. 我们采用原子模拟研究了化学元素分布和温度对等原子比MoNbTaW难熔高熵合金变形机制的影响. 根据微观结构演化, 建立了基于微观结构的本构模型, 定量评估多种强化机制的贡献. 结果表明, 应变硬化后, 流动应力随应变呈锯齿状剧烈波动. 由于退火结构的溶质浓度降低, 温度升高降低了应变硬化率和流动应力波动幅度. 变形孪晶在变形机制中起着关键作用, 能够通过位错基塑性和晶粒中的非晶形核进一步调节局部变形. 有序结构的存在强烈影响了应力和应变分配. 固溶强化和晶界强化对流动应力的贡献很大, 孪晶强化对流动压力的贡献很小. 原子模拟和力学模型为深入理解难熔高熵合金变形行为及性能的精确预测提供依据.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. T. M. Smith, B. D. Esser, N. Antolin, A. Carlsson, R. E. A. Williams, A. Wessman, T. Hanlon, H. L. Fraser, W. Windl, D. W. McComb, and M. J. Mills, Phase transformation strengthening of high-temperature superalloys, Nat. Commun. 7, 13434 (2016).

    Article  Google Scholar 

  2. G. Chen, Y. Peng, G. Zheng, Z. Qi, M. Wang, H. Yu, C. Dong, and C. T. Liu, Polysynthetic twinned TiAl single crystals for high-temperature applications, Nat. Mater 15, 876 (2016).

    Article  Google Scholar 

  3. A. Manzoni, S. Singh, H. Daoud, R. Popp, R. Völkl, U. Glatzel, and N. Wanderka, On the path to optimizing the Al-Co-Cr-Cu-Fe-Ni-Ti high entropy alloy family for high temperature applications, Entropy 18, 104 (2016).

    Article  Google Scholar 

  4. O. N. Senkov, G. B. Wilks, J. M. Scott, and D. B. Miracle, Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys, Intermetallics 19, 698 (2011).

    Article  Google Scholar 

  5. O. N. Senkov, S. Gorsse, and D. B. Miracle, High temperature strength of refractory complex concentrated alloys, Acta Mater. 175, 394 (2019).

    Article  Google Scholar 

  6. O. N. Senkov, D. B. Miracle, K. J. Chaput, and J. P. Couzinie, Development and exploration of refractory high entropy alloys—A review, J. Mater. Res. 33, 3092 (2018).

    Article  Google Scholar 

  7. D. Luo, Q. Zhou, W. Ye, Y. Ren, C. Greiner, Y. He, and H. Wang, Design and characterization of self-lubricating refractory high entropy alloy-based multilayered films, ACS Appl. Mater. Interfaces 13, 55712 (2021).

    Article  Google Scholar 

  8. R. Feng, B. Feng, M. C. Gao, C. Zhang, J. C. Neuefeind, J. D. Poplawsky, Y. Ren, K. An, M. Widom, and P. K. Liaw, Superior high-temperature strength in a supersaturated refractory high-entropy alloy, Adv. Mater. 33, 2102401 (2021).

    Article  Google Scholar 

  9. Z. Wang, H. Wu, Y. Wu, H. Huang, X. Zhu, Y. Zhang, H. Zhu, X. Yuan, Q. Chen, S. Wang, X. Liu, H. Wang, S. Jiang, M. J. Kim, and Z. Lu, Solving oxygen embrittlement of refractory high-entropy alloy via grain boundary engineering, Mater. Today 54, 83 (2022).

    Article  Google Scholar 

  10. B. Xiao, W. Jia, H. Tang, J. Wang, and L. Zhou, Microstructure and mechanical properties of WMoTaNbTi refractory high-entropy alloys fabricated by selective electron beam melting, J. Mater. Sci. Tech. 108, 54 (2022).

    Article  Google Scholar 

  11. X. J. Fan, R. T. Qu, and Z. F. Zhang, Remarkably high fracture toughness of HfNbTaTiZr refractory high-entropy alloy, J. Mater. Sci. Tech. 123, 70 (2022).

    Article  Google Scholar 

  12. A. Kanchi, K. V. Rajulapati, B. S. Rao, D. Sivaprahasam, and R. C. Gundakaram, Influence of thermomechanical processing on microstructure and mechanical properties of MoNbTaW Refractory high-entropy alloy, J. Mater. Eng. Perform. 31, 7964 (2022).

    Article  Google Scholar 

  13. M. A. Melia, S. R. Whetten, R. Puckett, M. Jones, M. J. Heiden, N. Argibay, and A. B. Kustas, High-throughput additive manufacturing and characterization of refractory high entropy alloys, Appl. Mater. Today 19, 100560 (2020).

    Article  Google Scholar 

  14. M. Moorehead, K. Bertsch, M. Niezgoda, C. Parkin, M. Elbakhshwan, K. Sridharan, C. Zhang, D. Thoma, and A. Couet, High-throughput synthesis of Mo-Nb-Ta-W high-entropy alloys via additive manufacturing, Mater. Des. 187, 108358 (2020).

    Article  Google Scholar 

  15. Y. Zong, N. Hashimoto, and H. Oka, Study on irradiation effects of refractory bcc high-entropy alloy, Nucl. Mater. Energy 31, 101158 (2022).

    Article  Google Scholar 

  16. D. G. Kalali, S. Antharam, M. Hasan, P. S. Karthik, P. S. Phani, K. Bhanu Sankara Rao, and K. V. Rajulapati, On the origins of ultra-high hardness and strain gradient plasticity in multi-phase nanocrystalline MoNbTaTiW based refractory high-entropy alloy, Mater. Sci. Eng.-A 812, 141098 (2021).

    Article  Google Scholar 

  17. S. Yin, J. Ding, M. Asta, and R. O. Ritchie, Ab initio modeling of the energy landscape for screw dislocations in body-centered cubic high-entropy alloys, npj Comput. Mater. 6, 110 (2020).

    Article  Google Scholar 

  18. S. Yin, Y. Zuo, A. Abu-Odeh, H. Zheng, X. G. Li, J. Ding, S. P. Ong, M. Asta, and R. O. Ritchie, Atomistic simulations of dislocation mobility in refractory high-entropy alloys and the effect of chemical short-range order, Nat. Commun. 12, 4873 (2021).

    Article  Google Scholar 

  19. R. E. Kubilay, A. Ghafarollahi, F. Maresca, and W. A. Curtin, High energy barriers for edge dislocation motion in body-centered cubic high entropy alloys, npj Comput. Mater. 7, 112 (2021).

    Article  Google Scholar 

  20. F. Maresca, and W. A. Curtin, Mechanistic origin of high strength in refractory BCC high entropy alloys up to 1900K, Acta Mater. 182, 235 (2020).

    Article  Google Scholar 

  21. S. M. Shaikh, V. S. Hariharan, S. K. Yadav, and B. S. Murty, CALPHAD and rule-of-mixtures: A comparative study for refractory high entropy alloys, Intermetallics 127, 106926 (2020).

    Article  Google Scholar 

  22. O. N. Senkov, G. B. Wilks, D. B. Miracle, C. P. Chuang, and P. K. Liaw, Refractory high-entropy alloys, Intermetallics 18, 1758 (2010).

    Article  Google Scholar 

  23. Q. Li, H. Zhang, D. Li, Z. Chen, and Z. Qi, The effect of configurational entropy on mechanical properties of single BCC structural refractory high-entropy alloys systems, Int. J. Refractory Met. Hard Mater. 93, 105370 (2020).

    Article  Google Scholar 

  24. H. Zhuang, Sudoku-inspired high-Shannon-entropy alloys, Acta Mater. 225, 117556 (2021).

    Article  Google Scholar 

  25. E. Zhang, Y. Tang, M. Wen, A. Obaied, I. Roslyakova, and L. Zhang, On phase stability of Mo-Nb-Ta-W refractory high entropy alloys, Int. J. Refractory Met. Hard Mater. 103, 105780 (2022).

    Article  Google Scholar 

  26. W. Brostow, J. P. Dussault, and B. L. Fox, Construction of voronoi polyhedra, J. Comput. Phys. 29, 81 (1978).

    Article  MathSciNet  Google Scholar 

  27. J. Peng, L. Li, F. Li, B. Liu, S. Zherebtsov, Q. Fang, J. Li, N. Stepanov, Y. Liu, F. Liu, and P. K. Liaw, The predicted rate-dependent deformation behaviour and multistage strain hardening in a model heterostructured body-centered cubic high entropy alloy, Int. J. Plast. 145, 103073 (2021).

    Article  Google Scholar 

  28. S. Plimpton, Fast parallel algorithms for short-range molecular dynamics, J. Comput. Phys. 117, 1 (1995).

    Article  Google Scholar 

  29. X. W. Zhou, H. N. G. Wadley, R. A. Johnson, D. J. Larson, N. Tabat, A. Cerezo, A. K. Petford-Long, G. D. W. Smith, P. H. Clifton, R. L. Martens, and T. F. Kelly, Atomic scale structure of sputtered metal multilayers, Acta Mater. 49, 4005 (2001).

    Article  Google Scholar 

  30. J. Li, Q. Fang, B. Liu, and Y. Liu, Transformation induced softening and plasticity in high entropy alloys, Acta Mater. 147, 35 (2018).

    Article  Google Scholar 

  31. D. Y. Lin, S. S. Wang, D. L. Peng, M. Li, and X. D. Hui, An n-body potential for a Zr-Nb system based on the embedded-atom method, J. Phys.-Condens. Matter 25, 105404 (2013).

    Article  Google Scholar 

  32. K. W. Andrews, Elastic moduli of polycrystalline cubic metals, J. Phys. D-Appl. Phys. 11, 2527 (1978).

    Article  Google Scholar 

  33. A. Pandey, J. Gigax, and R. Pokharel, Machine learning interatomic potential for high-throughput screening of high-entropy alloys, JOM 74, 2908 (2022).

    Article  Google Scholar 

  34. F. Körmann, and M. Sluiter, Interplay between lattice distortions, vibrations and phase stability in NbMoTaW high entropy alloys, Entropy 18, 403 (2016).

    Article  Google Scholar 

  35. Y. Wang, M. Yan, Q. Zhu, W. Y. Wang, Y. Wu, X. Hui, R. Otis, S. L. Shang, Z. K. Liu, and L. Q. Chen, Computation of entropies and phase equilibria in refractory V-Nb-Mo-Ta-W high-entropy alloys, Acta Mater. 143, 88 (2018).

    Article  Google Scholar 

  36. A. Stukowski, Visualization and analysis of atomistic simulation data with OVITO—the open visualization tool, Model. Simul. Mater. Sci. Eng. 18, 015012 (2010).

    Article  Google Scholar 

  37. F. Aquistapace, N. Vazquez, M. Chiarpotti, O. Deluigi, C. J. Ruestes, and E. M. Bringa, Atomistic simulations of ductile failure in a b.c.c. high-entropy alloy, High Entropy Alloys Mater. (2022).

  38. R. A. Romero, S. Xu, W. R. Jian, I. J. Beyerlein, and C. V. Ramana, Atomistic simulations of the local slip resistances in four refractory multi-principal element alloys, Int. J. Plast. 149, 103157 (2022).

    Article  Google Scholar 

  39. J. M. Cowley, An approximate theory of order in alloys, Phys. Rev. 77, 669 (1950).

    Article  Google Scholar 

  40. X. B. Feng, J. Y. Zhang, Y. Q. Wang, Z. Q. Hou, K. Wu, G. Liu, and J. Sun, Size effects on the mechanical properties of nanocrystalline NbMoTaW refractory high entropy alloy thin films, Int. J. Plast. 95, 264 (2017).

    Article  Google Scholar 

  41. P. Rohith, G. Sainath, and V. S. Srinivasan, Effect of size, temperature and strain rate on dislocation density and deformation mechanisms in Cu nanowires, Physica B-Condensed Matter 561, 136 (2019).

    Article  Google Scholar 

  42. E. Hug, P. A. Dubos, and C. Keller, Temperature dependence and size effects on strain hardening mechanisms in copper polycrystals, Mater. Sci. Eng.-A 574, 253 (2013).

    Article  Google Scholar 

  43. Z. Wei, D. Wang, X. Yang, C. Wang, G. Chen, and F. Du, From crystalline to amorphous: An effective avenue to engineer high-performance electrode materials for sodium-ion batteries, Adv. Mater. Interfaces 5, 1800639 (2018).

    Article  Google Scholar 

  44. W. J. Sheng, X. Yang, J. Zhu, C. Wang, and Y. Zhang, Amorphous phase stability of NbTiAlSiN X high-entropy films, Rare Met. 37, 682 (2018).

    Article  Google Scholar 

  45. Y. Chen, S. W. Reng, J. Peng, and X. B. Liu, Chemical short range order and deformation mechanism of a refractory high entropy alloy HfNbTaZr under nanoindentation: An atomistic study, J. Mater. Res. Tech. 24, 3588 (2023).

    Article  Google Scholar 

  46. H. Wang, D. Chen, X. An, Y. Zhang, S. Sun, Y. Tian, Z. Zhang, A. Wang, J. Liu, M. Song, S. P. Ringer, T. Zhu, and X. Liao, Deformation-induced crystalline-to-amorphous phase transformation in a CrMnFeCoNi high-entropy alloy, Sci. Adv. 7, eabe3105 (2021).

    Article  Google Scholar 

  47. D. Choudhuri, B. Gwalani, S. Gorsse, M. Komarasamy, S. A. Mantri, S. G. Srinivasan, R. S. Mishra, and R. Banerjee, Enhancing strength and strain hardenability via deformation twinning in fcc-based high entropy alloys reinforced with intermetallic compounds, Acta Mater. 165, 420 (2019).

    Article  Google Scholar 

  48. B. Larrouy, P. Villechaise, J. Cormier, and O. Berteaux, Grain boundary-slip bands interactions: Impact on the fatigue crack initiation in a polycrystalline forged Ni-based superalloy, Acta Mater. 99, 325 (2015).

    Article  Google Scholar 

  49. J. M. Monti, E. M. Hopkins, K. Hattar, F. Abdeljawad, B. L. Boyce, and R. Dingreville, Stability of immiscible nanocrystalline alloys in compositional and thermal fields, Acta Mater. 226, 117620 (2022).

    Article  Google Scholar 

  50. J. Xie, X. P. Chen, Y. Cao, G. J. Huang, and Q. Liu, Microstructure and mechanical properties in Al-Mg-Sc alloy induced by heterodeformation, Mater. Charact. 183, 111622 (2022).

    Article  Google Scholar 

  51. T. Gao, H. Song, B. Wang, Y. Gao, Y. Liu, Q. Xie, Q. Chen, Q. Xiao, and Y. Liang, Molecular dynamics simulations of tensile response for FeNiCrCoCu high-entropy alloy with voids, Int. J. Mech. Sci. 237, 107800 (2023).

    Article  Google Scholar 

  52. L. Wang, W. Liu, B. Zhu, W. Chen, F. Zhang, B. Liu, J. Liu, J. Zhou, and Y. Zhao, Influences of strain rate, Al concentration and grain heterogeneity on mechanical behavior of CoNiFeAlxCu1-x high-entropy alloys: A molecular dynamics simulation, J. Mater. Res. Tech. 14, 2071 (2021).

    Article  Google Scholar 

  53. K. Xun, B. Zhang, Q. Wang, Z. Zhang, J. Ding, and E. Ma, Local chemical inhomogeneities in TiZrNb-based refractory high-entropy alloys, J. Mater. Sci. Tech. 135, 221 (2023).

    Article  Google Scholar 

  54. X. Liu, D. Hua, W. Wang, Q. Zhou, S. Li, J. Shi, Y. He, and H. Wang, Atomistic understanding of incipient plasticity in BCC refractory high entropy alloys, J. Alloys Compd. 920, 166058 (2022).

    Article  Google Scholar 

  55. L. Li, H. Chen, Q. Fang, J. Li, F. Liu, Y. Liu, and P. K. Liaw, Effects of temperature and strain rate on plastic deformation mechanisms of nanocrystalline high-entropy alloys, Intermetallics 120, 106741 (2020).

    Article  Google Scholar 

  56. S. Guo, M. Wang, S. Sui, J. Li, H. Chen, X. Hao, X. Zhao, and X. Lin, Research on optimizing strength and ductility of HfNbTaZr dual-phase high-entropy alloy by tuning chemical short-range order, Int. J. Refractory Met. Hard Mater. 108, 105942 (2022).

    Article  Google Scholar 

  57. F. Wang, G. H. Balbus, S. Xu, Y. Su, J. Shin, P. F. Rottmann, K. E. Knipling, J. C. Stinville, L. H. Mills, O. N. Senkov, I. J. Beyerlein, T. M. Pollock, and D. S. Gianola, Multiplicity of dislocation pathways in a refractory multiprincipal element alloy, Science 370, 95 (2020).

    Article  Google Scholar 

  58. L. Li, Q. Fang, J. Li, B. Liu, Y. Liu, and P. K. Liaw, Lattice-distortion dependent yield strength in high entropy alloys, Mater. Sci. Eng.-A 784, 139323 (2020).

    Article  Google Scholar 

  59. K. Yao, and X. Min, Abnormal strain rate strengthening and strain hardening with constitutive modeling in body-centered cubic {332} 〈113〉 TWIP titanium alloy, Acta Mater. 226, 117641 (2022).

    Article  Google Scholar 

  60. J. S. Aristeidakis, and G. N. Haidemenopoulos, Constitutive and transformation kinetics modeling of ε-, α′-Martensite and mechanical twinning in steels containing austenite, Acta Mater. 228, 117757 (2022).

    Article  Google Scholar 

  61. L. Zhu, H. Ruan, X. Li, M. Dao, H. Gao, and J. Lu, Modeling grain size dependent optimal twin spacing for achieving ultimate high strength and related high ductility in nanotwinned metals, Acta Mater. 59, 5544 (2011).

    Article  Google Scholar 

  62. J. Li, and A. K. Soh, Modeling of the plastic deformation of nanostructured materials with grain size gradient, Int. J. Plast. 39, 88 (2012).

    Article  Google Scholar 

  63. E. O. Hall, The deformation and ageing of mild steel: III Discussion of results, Proc. Phys. Soc. B 64, 747 (1951).

    Article  Google Scholar 

  64. Y. Long, X. Liang, K. Su, H. Peng, and X. Li, A fine-grained NbMoTaWVCr refractory high-entropy alloy with ultra-high strength: Microstructural evolution and mechanical properties, J. Alloys Compd. 780, 607 (2019).

    Article  Google Scholar 

  65. C. Wagner, and G. Laplanche, Effects of stacking fault energy and temperature on grain boundary strengthening, intrinsic lattice strength and deformation mechanisms in CrMnFeCoNi high-entropy alloys with different Cr/Ni ratios, Acta Mater. 244, 118541 (2023).

    Article  Google Scholar 

  66. J. E. Bailey, and P. B. Hirsch, The dislocation distribution, flow stress, and stored energy in cold-worked polycrystalline silver, Philos. Mag. 5, 485 (1960).

    Article  Google Scholar 

  67. H. Mecking, and U. F. Kocks, Kinetics of flow and strain-hardening, Acta Metall. 29, 1865 (1981).

    Article  Google Scholar 

  68. Y. Wei, Scaling of maximum strength with grain size in nanotwinned fcc metals, Phys. Rev. B 83, 132104 (2011).

    Article  Google Scholar 

  69. C. W. Sinclair, W. J. Poole, and Y. Bréchet, A model for the grain size dependent work hardening of copper, Scripta Mater. 55, 739 (2006).

    Article  Google Scholar 

  70. J. Li, G. J. Weng, S. Chen, and X. Wu, On strain hardening mechanism in gradient nanostructures, Int. J. Plast. 88, 89 (2017).

    Article  Google Scholar 

  71. E. Antillon, C. Woodward, S. I. Rao, and B. Akdim, Chemical short range order strengthening in BCC complex concentrated alloys, Acta Mater. 215, 117012 (2021).

    Article  Google Scholar 

  72. F. Körmann, A. V. Ruban, and M. H. F. Sluiter, Long-ranged interactions in bcc NbMoTaW high-entropy alloys, Mater. Res. Lett. 5, 35 (2017).

    Article  Google Scholar 

  73. S. Nag, and W. A. Curtin, Effect of solute-solute interactions on strengthening of random alloys from dilute to high entropy alloys, Acta Mater. 200, 659 (2020).

    Article  Google Scholar 

  74. J. M. Rosenberg, and H. R. Piehler, Calculation of the taylor factor and lattice rotations for bcc metals deforming by pencil glide, Metall. Trans. 2, 257 (1971).

    Article  Google Scholar 

  75. S. I. Rao, C. Woodward, B. Akdim, E. Antillon, T. A. Parthasarathy, and O. N. Senkov, Estimation of diffusional effects on solution hardening at high temperatures in single phase compositionally complex body centered cubic alloys, Scripta Mater. 172, 135 (2019).

    Article  Google Scholar 

  76. X. L. Wu, P. Jiang, L. Chen, F. Yuan, and Y. T. Zhu, Extraordinary strain hardening by gradient structure, Proc. Natl. Acad. Sci. USA 111, 7197 (2014).

    Article  Google Scholar 

  77. H. A. Moreen, R. Taggart, and D. H. Polonis, A model for the prediction of lattice parameters of solid solutions, Metall. Trans. 2, 265 (1971).

    Article  Google Scholar 

  78. S. Chen, Z. H. Aitken, S. Pattamatta, Z. Wu, Z. G. Yu, D. J. Srolovitz, P. K. Liaw, and Y. W. Zhang, Short-range ordering alters the dislocation nucleation and propagation in refractory high-entropy alloys, Mater. Today 65, 14 (2023).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. U2267252, 12172123, and 12072109), the Natural Science Foundation of Hunan Province (Grant Nos. 2022JJ20001 and 2021JJ40032), the Science and Technology Innovation Program of Hunan Province (Grant No. 2022RC1200), the National Science Foundation (Grant Nos. DMR-1611180, 1809640, and 2226508), and the Army Research Office (Grant Nos. W911NF-13-1-0438 and W911NF-19-2-0049).

Author information

Authors and Affiliations

Authors

Contributions

Author contributions Jia Li Conceptualization, Methodology, Writing - original draft, Writing - review & editing, Formal analysis, Software, Investigation, Data curation, Validation, Supervision, Funding acquisition. Siwei Ren Formal analysis, Software, Writing - original draft, Writing - review & editing, Investigation, Data curation. Bin Liu: Conceptualization, Validation, Supervision. PK Liaw: Writing - review & editing, Project administration, Supervision, Funding acquisition. Qihong Fang: Conceptualization, Methodology, Validation, Writing - review & editing, Supervision, Funding acquisition.

Corresponding author

Correspondence to Qihong Fang  (方棋洪).

Ethics declarations

Conflict of interest On behalf of all authors, the corresponding author states that there is no conflict of interest.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Ren, S., Liu, B. et al. Influence of chemistry and temperature on mechanical behavior and deformation mechanisms of refractory high-entropy alloys: an integrated simulation-modeling analysis. Acta Mech. Sin. 40, 423122 (2024). https://doi.org/10.1007/s10409-023-23122-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10409-023-23122-x

Navigation