Skip to main content
Log in

Analytical fractal model of sound absorption for cellular foams with randomly distributed fully/semi-open pores

具有随机分布的全/半开孔隙的多孔泡沫吸声分形模型

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

Cellular foams with randomly distributed open pores are increasingly exploited in sound management applications, where the sound absorption coefficient (SAC) typically serves as a crucial acoustic parameter for performance evaluation and design optimization. Dependent upon the processing method, the pores in a cellular foam can be either fully open or semi-open and often exhibit fractal distribution features. To facilitate engineering applications, it is imperative to analytically predict the SACs of these foams. However, predicting analytically the SAC for foams poses a challenge. Therefore, this study proposes a simplified representative structure (RS) with semi-open or fully open pores to analyze the flow properties within the foam microscopically, while the fractal theory is applied to portray the randomly distributed pores. With the extent to which the pores are open characterized using a purposely introduced parameter called the open-pore degree, both viscous and thermal characteristic lengths of the RS are analytically obtained. Subsequently, built upon the classical Johnson-Champoux-Allard (JCA) model for sound propagation in porous media, an analytical model is developed to unify the RS with the fractal theory so that the SAC can be predicted as a function of key morphological parameters of the foam having fully/semi-open pores. Compared with existing experimental measurements and numerical simulation results, the proposed analytical model predicts well the key flow properties as well as the SAC of foams having either semi-open or fully open pore topologies. In the frequency range of 0–4500 Hz, a semi-open foam can better attenuate the sound wave relative to its fully-open counterpart having the same porosity. With the porosity fixed at 0.95, the overall SAC of semi-open foam is improved by 21.2%, 57.7%, and 75.8%, respectively, as its open-pore degree is reduced from 0.75 via 0.50 to 0.25.

摘要

具有随机孔隙的多孔泡沫在声音管理应用中得到越来越多的利用, 其吸声系数通常作为性能评估和设计优化的关键声学参数. 根据不同的加工方法, 泡沫中的孔隙可以是全开或半开的, 并且通常表现为分形分布特征. 为了便于工程应用, 有必要对这些泡沫的吸声系数进行分析预测. 然而, 分析预测泡沫的吸声系数是一个挑战. 因此, 本研究提出了半开孔和全开孔的简化代表结构来微观分析泡沫内部的流动特性, 并应用分形理论来描述随机分布的孔隙. 引入一个叫“开孔度”的参数来表征孔隙的开放程度, 可以解析地获得代表结构的粘性和热特征长度. 随后, 在经典吸声系数Johnson-Champoux-Allard模型的基础上, 建立了一种将代表结构与分形理论统一起来的解析模型, 从而可以将吸声系数作为具有全开/半开孔泡沫的关键形态参数的函数进行预测. 与已有的实验测量和数值模拟结果相比, 本文提出的分析模型可以较好地预测了半开孔和全开孔泡沫的关键流动特性和吸声系数. 在0到4500 Hz的频率范围内, 半开孔泡沫相对于具有相同孔隙率的全开孔泡沫可以更好地衰减声波. 在孔隙率为0.95的条件下, 半开孔泡沫的总体吸声系数分别提高了21.2%、57.7%和75.8%, 此时开孔度由0.75到0.50降低了0.25.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. F. Mohd, and M. Talha, Influence of material uncertainties on thermomechanical postbuckling behaviour of graphene reinforced functionally graded porous beams, Acta Mech. Sin. 39, 722385 (2023).

    Article  Google Scholar 

  2. Z. Y. Xie, J. L. Yu, and Z. J. Zheng, A plastic indentation model for sandwich beams with metallic foam cores, Acta Mech. Sin. 27, 963 (2011).

    Article  Google Scholar 

  3. R. Qi, X. Qin, C. Lu, C. Ma, W. Mao, and W. Zhang, Experimental study on the isothermal adsorption of methane gas in natural gas hydrate argillaceous silt reservoir, Adv. Geo-Energy Res. 6, 143 (2022).

    Article  Google Scholar 

  4. R. Guo, X. Chen, Z. Wan, H. Hu, and S. Cui, Noise reduction in cavity flow by addition of porous media, Acta Mech. Sin. 38, 321358 (2022).

    Article  MathSciNet  Google Scholar 

  5. C. Zhang, H. Li, J. Gong, J. Chen, Z. Li, Q. Li, M. Cheng, X. Li, and J. Zhang, The review of fiber-based sound-absorbing structures, Textile Res. J. 93, 434 (2023).

    Article  Google Scholar 

  6. W. Sun, B. Pan, X. Song, H. Xiao, J. Zhou, and D. Sui, A novel sound absorber design of nanofibrous composite porous material, Mater. Des. 214, 110418 (2022).

    Article  Google Scholar 

  7. C. He, B. Du, J. Ma, H. Xiong, J. Qian, M. Cai, and A. Shui, Enhanced sound absorption properties of porous ceramics modified by graphene oxide films, J. Am. Ceram. Soc. 105, 3177 (2022).

    Article  Google Scholar 

  8. T. Xiao, X. Yang, K. Hooman, L. Jin, C. Yang, and T. J. Lu, Conductivity and permeability of graphite foams: Analytical modelling and pore-scale simulation, Int. J. Thermal Sci. 179, 107706 (2022).

    Article  Google Scholar 

  9. T. Xiao, Q. Zhang, X. Yang, K. Hooman, and G. Li, Influence of solder condition on effective thermal conductivity of two-directional random fibres: Pore-scale simulation, Int. J. Heat Mass Transfer 202, 123715 (2023).

    Article  Google Scholar 

  10. X. Guo, and G. D. Cheng, Recent development in structural design and optimization, Acta Mech. Sin. 26, 807 (2010).

    Article  MathSciNet  Google Scholar 

  11. T. Xiao, Z. Liu, L. Lu, H. Han, X. Huang, X. Song, X. Yang, and X. Meng, LSTM-BP neural network analysis on solid-liquid phase change in a multi-channel thermal storage tank, Eng. Anal. Bound. Elem. 146, 226 (2023).

    Article  Google Scholar 

  12. J. Deng, G. Zhao, L. Zhang, H. Ma, and Y. Rong, CO2 adsorption and separation properties of M-MOF-74 materials determined by molecular simulation, Capillarity 6, 13 (2023).

    Article  Google Scholar 

  13. F. Li, X. Huang, Y. Li, L. Lu, X. Meng, X. Yang, and B. Sundén, Application and analysis of flip mechanism in the melting process of a triplex-tube latent heat energy storage unit, Energy Rep. 9, 3989 (2023).

    Article  Google Scholar 

  14. Z. Du, G. Liu, X. Huang, T. Xiao, X. Yang, and Y. L. He, Numerical studies on a fin-foam composite structure towards improving melting phase change, Int. J. Heat Mass Transfer 208, 124076 (2023).

    Article  Google Scholar 

  15. Y. Wang, H. Yuan, A. Martinez, P. Hong, H. Xu, and F. R. Bockmiller, Polymer electrolyte membrane fuel cell and hydrogen station networks for automobiles: Status, technology, and perspectives, Adv. Appl. Energy 2, 100011 (2021).

    Article  Google Scholar 

  16. G. Zhang, L. Wu, Z. Qin, J. Wu, F. Xi, G. Mou, Y. Wang, and K. Jiao, A comprehensive three-dimensional model coupling channel multi-phase flow and electrochemical reactions in proton exchange membrane fuel cell, Adv. Appl. Energy 2, 100033 (2021).

    Article  Google Scholar 

  17. H. Pourrahmani, and J. Van herle, Evaluation Criterion of Proton Exchange Membrane (ECPEM) fuel cells considering inserted porous media inside the gas flow channel, Appl. Thermal Eng. 203, 117952 (2022).

    Article  Google Scholar 

  18. J. Park, S. H. Yang, K. S. Minn, C. B. Yu, S. Y. Pak, Y. S. Song, and J. R. Youn, Design and numerical analysis of syntactic hybrid foam for superior sound absorption, Mater. Des. 142, 212 (2018).

    Article  Google Scholar 

  19. N. Rastegar, A. Ershad-Langroudi, H. Parsimehr, and G. Moradi, Sound-absorbing porous materials: A review on polyurethane-based foams, Iran. Polym. J. 31, 83 (2022).

    Article  Google Scholar 

  20. H. J. Choi, and J. H. Kim, Sound absorption improvement of polyurethane foam through sequential arrangement of its cellular morphology, Korean J. Chem. Eng. 39, 1072 (2022).

    Article  Google Scholar 

  21. N. Kino, G. Nakano, and Y. Suzuki, Non-acoustical and acoustical properties of reticulated and partially reticulated polyurethane foams, Appl. Acoust. 73, 95 (2012).

    Article  Google Scholar 

  22. O. Doutres, N. Atalla, and K. Dong, Effect of the microstructure closed pore content on the acoustic behavior of polyurethane foams, J. Appl. Phys. 110, 064901 (2011).

    Article  Google Scholar 

  23. M. Tan Hoang, and C. Perrot, Solid films and transports in cellular foams, J. Appl. Phys. 112, 054911 (2012).

    Article  Google Scholar 

  24. C. Perrot, F. Chevillotte, M. Tan Hoang, G. Bonnet, F. X. Bécot, L. Gautron, and A. Duval, Microstructure, transport, and acoustic properties of open-cell foam samples: Experiments and three-dimensional numerical simulations, J. Appl. Phys. 111, 014911 (2012).

    Article  Google Scholar 

  25. T. J. Lu, F. Chen, and D. He, Sound absorption of cellular metals with semiopen cells, J. Acoust. Soc. Am. 108, 1697 (2000).

    Article  Google Scholar 

  26. Y. H. Guan, D. Zhao, and T. S. Low, Experimental evaluation on acoustic impedance and sound absorption performances of porous foams with additives with Helmholtz number, Aerosp. Sci. Tech. 119, 107120 (2021).

    Article  Google Scholar 

  27. M. Tan Hoang, and C. Perrot, Identifying local characteristic lengths governing sound wave properties in solid foams, J. Appl. Phys. 113, 084905 (2013).

    Article  Google Scholar 

  28. R. F. Madvari, M. N. Sharak, M. J. Tehrani, and M. Abbasi, Estimation of metal foam microstructure parameters for maximum sound absorption coefficient in specified frequency band using particle swarm optimisation, Arch. Acoust. 47, 33 (2022).

    Google Scholar 

  29. S. Chen, S. Lei, J. Zhu, and T. Zhang, The influence of microstructure on sound absorption of polyurethane foams through numerical simulation, Macro Theor. Simul. 30, 2000075 (2021).

    Article  Google Scholar 

  30. L. Liang, H. Mi, W. Guo, Y. Zhang, H. Ma, Z. Zhang, and L. Li, Estimation of sound absorption coefficient of composite structured aluminum foam by radial basis function neural network, Appl. Acoust. 185, 108414 (2022).

    Article  Google Scholar 

  31. J. Lee, J. Kim, Y. Shin, J. Jeon, Y. J. Kang, and I. Jung, Multilayered graphene oxide impregnated polyurethane foam for ultimate sound absorbing performance: Algorithmic approach and experimental validation, Appl. Acoust. 203, 109194 (2023).

    Article  Google Scholar 

  32. D. L. Johnson, J. Koplik, and R. Dashen, Theory of dynamic permeability and tortuosity in fluid-saturated porous media, J. Fluid Mech. 176, 379 (1987).

    Article  Google Scholar 

  33. Y. Champoux, and J. F. Allard, Dynamic tortuosity and bulk modulus in air-saturated porous media, J. Appl. Phys. 70, 1975 (1991).

    Article  Google Scholar 

  34. D. Lafarge, P. Lemarinier, J. F. Allard, and V. Tarnow, Dynamic compressibility of air in porous structures at audible frequencies, J. Acoust. Soc. Am. 102, 1995 (1997).

    Article  Google Scholar 

  35. S. R. Pride, F. D. Morgan, and A. F. Gangi, Drag forces of porous-medium acoustics, Phys. Rev. B 47, 4964 (1993).

    Article  Google Scholar 

  36. X. H. Yang, S. W. Ren, W. B. Wang, X. Liu, F. X. Xin, and T. J. Lu, A simplistic unit cell model for sound absorption of cellular foams with fully/semi-open cells, Compos. Sci. Tech. 118, 276 (2015).

    Article  Google Scholar 

  37. C. Perrot, R. Panneton, and X. Olny, Periodic unit cell reconstruction of porous media: Application to open-cell aluminum foams, J. Appl. Phys. 101, 113538 (2007).

    Article  Google Scholar 

  38. B. Yu, and P. Cheng, A fractal permeability model for bi-dispersed porous media, Int. J. Heat Mass Transfer 45, 2983 (2002).

    Article  Google Scholar 

  39. J. Cai, D. Lin, H. Singh, W. Wei, and S. Zhou, Shale gas transport model in 3D fractal porous media with variable pore sizes, Mar. Pet. Geol. 98, 437 (2018).

    Article  Google Scholar 

  40. Z. Deng, X. Liu, C. Zhang, Y. Huang, and Y. Chen, Melting behaviors of PCM in porous metal foam characterized by fractal geometry, Int. J. Heat Mass Transfer 113, 1031 (2017).

    Article  Google Scholar 

  41. T. Xiao, J. Guo, X. Yang, K. Hooman, and T. J. Lu, On the modelling of heat and fluid transport in fibrous porous media: Analytical fractal models for permeability and thermal conductivity, Int. J. Thermal Sci. 172, 107270 (2022).

    Article  Google Scholar 

  42. B. Yu, L. J. Lee, and H. Cao, A fractal in-plane permeability model for fabrics, Polym. Compos. 23, 201 (2002).

    Article  Google Scholar 

  43. B. Yu, and J. Li, Some fractal characters of porous media, Fractals 09, 365 (2001).

    Article  Google Scholar 

  44. J. Allard, and N. Atalla, Propagation of Sound in Porous Media: Modelling Sound Absorbing Materials (John Wiley & Sons, 2009).

  45. B. M. Yu, Fractal character for tortuous streamtubes in porous media, Chin. Phys. Lett. 22, 158 (2005).

    Article  Google Scholar 

  46. T. Xiao, X. Yang, K. Hooman, and T. J. Lu, Analytical fractal models for permeability and conductivity of open-cell metallic foams, Int. J. Heat Mass Transfer 177, 121509 (2021).

    Article  Google Scholar 

  47. D. L. Johnson, J. Koplik, and L. M. Schwartz, New pore-size parameter characterizing transport in porous media, Phys. Rev. Lett. 57, 2564 (1986).

    Article  Google Scholar 

  48. P. Du Plessis, A. Montillet, J. Comiti, and J. Legrand, Pressure drop prediction for flow through high porosity metallic foams, Chem. Eng. Sci. 49, 3545 (1994).

    Article  Google Scholar 

  49. A. Bhattacharya, V. V. Calmidi, and R. L. Mahajan, Thermophysical properties of high porosity metal foams, Int. J. Heat Mass Transfer 45, 1017 (2002).

    Article  Google Scholar 

  50. M. S. Phanikumar, and R. L. Mahajan, Non-Darcy natural convection in high porosity metal foams, Int. J. Heat Mass Transfer 45, 3781 (2002).

    Article  Google Scholar 

  51. S. Krishnan, J. Y. Murthy, and S. V. Garimella, Direct simulation of transport in open-cell metal foam, J. Heat Transfer 128, 793 (2006).

    Article  Google Scholar 

  52. S. Mancin, C. Zilio, A. Cavallini, and L. Rossetto, Pressure drop during air flow in aluminum foams, Int. J. Heat Mass Transfer 53, 3121 (2010).

    Article  Google Scholar 

  53. Z. Wu, C. Caliot, F. Bai, G. Flamant, Z. Wang, J. Zhang, and C. Tian, Experimental and numerical studies of the pressure drop in ceramic foams for volumetric solar receiver applications, Appl. Energy 87, 504 (2010).

    Article  Google Scholar 

  54. K. Hooman, and N. Dukhan, A theoretical model with experimental verification to predict hydrodynamics of foams, Transp. Porous. Media 100, 393 (2013).

    Article  Google Scholar 

  55. P. Khayargoli, V. Loya, L. Lefebvre, and M. Medraj, The impact of microstructure on the permeability of metal foams, CSME Forum 2004, 220 (2004).

    Google Scholar 

  56. A. Tamayol, and M. Bahrami, Transverse permeability of fibrous porous media, Phys. Rev. E 83, 046314 (2011).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 51976155 and 12032010), the Research Fund of State Key Laboratory of Mechanics and Control of Mechanical Structures (Grant No. MCMS-I-0222K01), and the Fund of Prospective Layout of Scientific Research for Nanjing University of Aeronautics and Astronautics. One of the authors (Xiaohu Yang) gratefully acknowledged the support of K. C. Wong Education Foundation.

Author information

Authors and Affiliations

Authors

Contributions

Author contributions Tian Xiao and Xiaohu Yang designed the research. Tian Xiao wrote the first draft of the manuscript. Xiaohu Yang proposed the conceptualization. Tian Xiao and Xiaohu Yang developed models. Liu Lu, Chenlei Yu, and Gao Shu completed the data curation and analyzed study data. Liu Lu, Xiaohu Yang, and Tian Jian Lu helped organize the manuscript. Tian Xiao, Xiaohu Yang, and Tian Jian Lu revised and edited the final version.

Corresponding authors

Correspondence to Xiaohu Yang  (杨肖虎) or Tian Jian Lu  (卢天健).

Ethics declarations

Conflict of interest On behalf of. all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, T., Lu, L., Yu, C. et al. Analytical fractal model of sound absorption for cellular foams with randomly distributed fully/semi-open pores. Acta Mech. Sin. 40, 423109 (2024). https://doi.org/10.1007/s10409-023-23109-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10409-023-23109-x

Navigation