Skip to main content
Log in

Constitutive modelling of a coarse sand under unfrozen and frozen states

未冻结和冻结粗砂的本构模型研究

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

Construction of infrastructure in cold regions requires an understanding of the mechanical characteristics of soils under unfrozen and frozen states. For investigating the constitutive behaviors of a coarse sand under unfrozen and frozen states, a critical state model considering the effect of particle breakage was developed, followed by the establishment of a mesomechanical-based frozen soil model based on homogenization theory. The relative breakage, defined by grain size distributions (GSDs) and evaluated by modified plastic work, was introduced into the elastic law and hardening rule of sandy soil. The deformation and relative breakage properties of sandy soil during the loading process were examined by the developed particle crushing model. Meanwhile, the behavior of the ice inclusion phase was described by a generalized hyperbolic model. On the basis of constitutive equations of the sandy matrix as well as ice inclusions, a mesomechanical-based model of the frozen sandy sample was established by introducing a simplified stress concentration tensor between meso and macro stresses. Compared with triaxial test data, the mesomechanical-based model developed in this study reproduced the constitutive behavior of frozen sandy sample at different temperatures and at various stress paths well. It is hoped that the results of this work can serve as a reference for the constitutive simulation of soils in cold regions.

摘要

在寒区进行基础设施建设, 需要了解土体在未冻结和冻结状态下的力学特性. 为研究粗砂在未冻结和冻结状态下的本构行为, 本文首先将颗粒破碎率引入砂土的弹性定律和硬化规律中, 建立砂土的临界状态模型, 对加载过程中的变形和破碎情况进行了研究. 同时, 采用广义双曲线模型描述了冰夹杂相的力学行为. 在基质体和夹杂体本构方程基础上, 通过在细观应力和宏观应力之间引入简化的应力集中张量, 建立了基于细观力学的冻结砂土模型. 通过与不同温度和不同应力路径下的三轴试验结果对比, 验证了本文所建立的冻结粗砂宏细观本构模型.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. X. Xu, B. Wang, C. Fan, and W. Zhang, Strength and deformation characteristics of silty clay under frozen and unfrozen states, Cold Regions Sci. Tech. 172, 102982 (2020).

    Article  Google Scholar 

  2. X. T. Xu, C. X. Fan, and T. Y. Zhang, A constitutive model with effect of temperature for frozen soil, Adv. Mater. Res. 919–921, 627 (2014).

    Article  Google Scholar 

  3. V. I. Aksenov, R. G. Kal’bergenov, and A. R. Leonov, Strength characteristics of frozen saline soil, Soil Mech. Foundation Eng. 40, 55 (2003).

    Article  Google Scholar 

  4. W. Ma, and X. Chang, Analyses of strength and deformation of an artificially frozen soil wall in underground engineering, Cold Regions Sci. Tech. 34, 11 (2002).

    Article  Google Scholar 

  5. Y. Yang, F. Gao, Y. Lai, and H. Cheng, Experimental and theoretical investigations on the mechanical behavior of frozen silt, Cold Regions Sci. Tech. 130, 59 (2016).

    Article  Google Scholar 

  6. D. Chang, Y. Lai, and F. Yu, An elastoplastic constitutive model for frozen saline coarse sandy soil undergoing particle breakage, Acta Geotech. 14, 1757 (2019).

    Article  Google Scholar 

  7. D. Chen, D. Wang, W. Ma, L. Lei, and G. Li, A strength criterion for frozen clay considering the influence of stress Lode angle, Can. Geotech. J. 56, 1557 (2019).

    Article  Google Scholar 

  8. R. Gao, and J. Ye, Mechanical behaviors of coral sand and relationship between particle breakage and plastic work, Eng. Geol. 316, 107063 (2023).

    Article  Google Scholar 

  9. S. Prabhu, and T. Qiu, Modeling of sand particle crushing in split Hopkinson pressure bar tests using the discrete element method, Int. J. Impact Eng. 156, 103974 (2021).

    Article  Google Scholar 

  10. P. Zuan, L. Yang, and L. Fei, Particle breakage behavior in frozen sands during triaxial shear tests based on the energy principle, Cold Regions Sci. Tech. 199, 103571 (2022).

    Article  Google Scholar 

  11. Y. Sun, Y. Xiao, and H. Ji, Dilation and breakage dissipation of granular soils subjected to monotonic loading, Acta Mech. Sin. 32, 1065 (2016).

    Article  MATH  Google Scholar 

  12. B. O. Hardin, Crushing of soil particles, J. Geotech. Engrg. 111, 1177 (1985).

    Article  Google Scholar 

  13. I. Einav, Breakage mechanics—Part I: Theory, J. Mech. Phys. Solids 55, 1274 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  14. I. Einav, Breakage mechanics—Part II: Modelling granular materials, J. Mech. Phys. Solids 55, 1298 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  15. A. Daouadji, P. Y. Hicher, and A. Rahma, An elastoplastic model for granular materials taking into account grain breakage, Eur. J. Mech.-A Solids 20, 113 (2001).

    Article  MATH  Google Scholar 

  16. W. Salim, and B. Indraratna, A new elastoplastic constitutive model for coarse granular aggregates incorporating particle breakage, Can. Geotech. J. 41, 657 (2004).

    Article  Google Scholar 

  17. A. Tengattini, A. Das, G. D. Nguyen, G. Viggiani, S. A. Hall, and I. Einav, A thermomechanical constitutive model for cemented granular materials with quantifiable internal variables. Part I—Theory, J. Mech. Phys. Solids 70, 281 (2014).

    Article  MathSciNet  Google Scholar 

  18. Y. Xiao, Y. F. Sun, and K. F. Hanif, A particle-breakage critical state model for rockfill material, Sci. China Tech. Sci. 58, 1125 (2015).

    Article  Google Scholar 

  19. Y. Xiao, H. Liu, X. Ding, Y. Chen, J. Jiang, and W. Zhang, Influence of particle breakage on critical state line of rockfill material, Int. J. Geomech. 16, 04015031 (2016).

    Article  Google Scholar 

  20. C. Zhang, J. Ji, J. Kodikara, and Y. Gui, Evaluation of the performance of a breakage model for high porosity Haubourdin chalk, Comput. Geotech. 90, 113 (2017).

    Article  Google Scholar 

  21. B. Indraratna, J. S. Vinod, and J. Lackenby, Influence of particle breakage on the resilient modulus of railway ballast, Géotechnique 59, 643 (2009).

    Article  Google Scholar 

  22. H. Liu, and D. Zou, Associated generalized plasticity framework for modeling gravelly soils considering particle breakage, J. Eng. Mech. 139, 606 (2013).

    Article  Google Scholar 

  23. W. Hu, Z. Y. Yin, C. Dano, and P. Y. Hicher, A constitutive model for granular materials considering grain breakage, Sci. China Tech. Sci. 54, 2188 (2011).

    Article  MATH  Google Scholar 

  24. Z. Y. Yin, P. Y. Hicher, C. Dano, and Y. F. Jin, Modeling mechanical behavior of very coarse granular materials, J. Eng. Mech. 143, C4016006 (2017).

    Article  Google Scholar 

  25. F. Ma, E. Liu, B. Song, P. Wang, D. Wang, and J. Kang, A poromechanics-based constitutive model for warm frozen soil, Cold Regions Sci. Tech. 199, 103555 (2022).

    Article  Google Scholar 

  26. P. Wang, E. Liu, and B. Zhi, An elastic-plastic model for frozen soil from micro to macro scale, Appl. Math. Model. 91, 125 (2021).

    Article  MathSciNet  MATH  Google Scholar 

  27. D. Wang, E. Liu, D. Zhang, P. Yue, P. Wang, J. Kang, and Q. Yu, An elasto-plastic constitutive model for frozen soil subjected to cyclic loading, Cold Regions Sci. Tech. 189, 103341 (2021).

    Article  Google Scholar 

  28. J. He, F. Niu, H. Jiang, and C. Jiao, Fractional viscoelastic-plastic constitutive model for frozen soil based on microcosmic damage mechanism, Mech. Mater. 177, 104545 (2023).

    Article  Google Scholar 

  29. Z. Zhu, T. Fu, Z. Zhou, and C. Cao, Research on Ottosen constitutive model of frozen soil under impact load, Int. J. Rock Mech. Min. Sci. 137, 104544 (2021).

    Article  Google Scholar 

  30. D. Chang, Y. Lai, and M. Zhang, A meso-macroscopic constitutive model of frozen saline sandy soil based on homogenization theory, Int. J. Mech. Sci. 159, 246 (2019).

    Article  Google Scholar 

  31. B. Li, Z. Zhu, J. Ning, T. Li, and Z. Zhou, Viscoelastic-plastic constitutive model with damage of frozen soil under impact loading and freeze-thaw loading, Int. J. Mech. Sci. 214, 106890 (2022).

    Article  Google Scholar 

  32. Y. Zhao, M. Zhang, and J. Gao, Research progress of constitutive models of frozen soils: A review, Cold Regions Sci. Tech. 206, 103720 (2023).

    Article  Google Scholar 

  33. K. Sun, L. Tang, A. Zhou, and X. Ling, An elastoplastic damage constitutive model for frozen soil based on the super/subloading yield surfaces, Comput. Geotech. 128, 103842 (2020).

    Article  Google Scholar 

  34. A. Shastri, M. Sánchez, X. Gai, M. Y. Lee, and T. Dewers, Mechanical behavior of frozen soils: Experimental investigation and numerical modeling, Comput. Geotech. 138, 104361 (2021).

    Article  Google Scholar 

  35. X. Xu, Y. Wang, R. Bai, H. Zhang, and K. Hu, Effects of sodium sulfate content on mechanical behavior of frozen silty sand considering concentration of saline solution, Results Phys. 6, 1000 (2016).

    Article  Google Scholar 

  36. W. R. Tang, Z. W. Zhu, T. T. Fu, Z. W. Zhou, and Z. H. Shangguan, Dynamic experiment and numerical simulation of frozen soil under confining pressure, Acta Mech. Sin. 36, 1302 (2020).

    Article  Google Scholar 

  37. Y. Zhao, Y. Lai, J. Zhang, and R. Bai, A bounding surface model for frozen sulfate saline silty clay considering rotation of principal stress axes, Int. J. Mech. Sci. 177, 105570 (2020).

    Article  Google Scholar 

  38. C. González, and J. LLorca, A self-consistent approach to the elasto-plastic behaviour of two-phase materials including damage, J. Mech. Phys. Solids 48, 675 (2000).

    Article  MATH  Google Scholar 

  39. H. K. Lee, and S. Simunovic, A damage constitutive model of progressive debonding in aligned discontinuous fiber composites, Int. J. Solids Struct. 38, 875 (2001).

    Article  MATH  Google Scholar 

  40. A. Diambra, E. Ibraim, D. Muir Wood, and A. R. Russell, Fibre reinforced sands: Experiments and modelling, Geotextiles Geomembranes 28, 238 (2010).

    Article  Google Scholar 

  41. A. Diambra, and E. Ibraim, Modelling of fibre-cohesive soil mixtures, Acta Geotech. 9, 1029 (2014).

    Article  Google Scholar 

  42. D. Zhang, and E. Liu, Binary-medium-based constitutive model of frozen soils subjected to triaxial loading, Results Phys. 12, 1999 (2019).

    Article  Google Scholar 

  43. S. Zhao, H. Chen, and J. Zhao, Multiscale modeling of freeze-thaw behavior in granular media, Acta Mech. Sin. 39, 722195 (2023).

    Article  MathSciNet  Google Scholar 

  44. E. S. Perdahcıoğlu, and H. J. M. Geijselaers, Constitutive modeling of two phase materials using the mean field method for homogenization, Int. J. Mater. Form. 4, 93 (2011).

    Article  Google Scholar 

  45. L. Nguyen, and B. Fatahi, Behaviour of clay treated with cement & fibre while capturing cementation degradation and fibre failure—C3F model, Int. J. Plast. 81, 168 (2016).

    Article  Google Scholar 

  46. H. Dejaloud, and Y. Jafarian, A micromechanical-based constitutive model for fibrous fine-grained composite soils, Int. J. Plast. 89, 150 (2017).

    Article  Google Scholar 

  47. P. Wang, E. Liu, D. Zhang, X. Liu, G. Zhang, and B. Song, An elastoplastic binary medium constitutive model for saturated frozen soils, Cold Regions Sci. Tech. 174, 103055 (2020).

    Article  Google Scholar 

  48. N. Miura, and T. Yamamoto, Particle-crushing properties of sands under high stresses, Technol. Rep. Yamaguchi Univ. 1, 439 (1976).

    Google Scholar 

  49. P. V. Lade, J. A. Yamamuro, and P. A. Bopp, Significance of particle crushing in granular materials, J. Geotech. Eng. 122, 309 (1996).

    Article  Google Scholar 

  50. S. Miura, K. Yagi, and T. Asonuma, Deformation-strength evaluation of crushable volcanic soils by laboratory and in-situ testing, Soils Found. 43, 47 (2003).

    Article  Google Scholar 

  51. C. Sammis, G. King, and R. Biegel, The kinematics of gouge deformation, Pure Appl. Geophys. 125, 777 (1987).

    Article  Google Scholar 

  52. T. Iwasaki, and F. Tatsuoka, Effects of grain size and grading on dynamic shear moduli of sands, Soils Found. 17, 19 (1977).

    Article  Google Scholar 

  53. S. Xu, G. Zheng, and Y. Jiang, A critical state subloading surface model of sands with shear hardening, J. Cent. South Univ. Technol. 15, 93 (2008).

    Article  Google Scholar 

  54. M. R. Coop, The mechanics of uncemented carbonate sands, Géotechnique 40, 607 (1990).

    Article  Google Scholar 

  55. E. Frossard, W. Hu, C. Dano, and P. Y. Hicher, Rockfill shear strength evaluation: A rational method based on size effects, Géotechnique 62, 415 (2012).

    Article  Google Scholar 

  56. H. A. Khoo, and T. M. Hrudey, Constitutive model for ice, J. Eng. Mech. 118, 259 (1992).

    Article  Google Scholar 

  57. H. Y. Xu, Study on strength and deformation of polycrystalline ice under confining pressures (in Chinese), Dissertation for Doctoral Degree (Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou, 2012).

    Google Scholar 

  58. T. T. Wong, N. R. Morgenstern, and D. C. Sego, A constitutive model for broken ice, Cold Regions Sci. Tech. 17, 241 (1990).

    Article  Google Scholar 

  59. R. Hill, Elastic properties of reinforced solids: Some theoretical principles, J. Mech. Phys. Solids 11, 357 (1963).

    Article  MATH  Google Scholar 

  60. H. Han, F. Xie, E. Wang, and D. Zhang, Experimental study on properties of compressive strength and failure criteria of river ice under triaxial compression, J. Hydraulic Eng. 49, 1199 (2018).

    Google Scholar 

  61. S. H. Xu, G. Zheng, and G. L. Xu, Critical state constitutive model of sand with shear hardening, Chin. J. Geotech. Eng. 31, 953 (2009).

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 42071078, 42171130, and 42201138), Guangdong Basic and Applied Basic Research Foundation (Grant No. 2022A1515010087), and the State Key Laboratory Program of Frozen Soil Engineering of China (Grant No. SKLFSE201915).

Author information

Authors and Affiliations

Authors

Contributions

Dan Chang and Jiankun Liu conceived the idea of project. Dan Chang established the theoretical model, performed the experiment, wrote the first draft of the manuscript, and revised the manuscript. Jiankun Liu and Anhua Xu reviewed, revised and edited the manuscript. Dan Chang and Jiankun Liu provided project resources. Jiankun Liu and Anhua Xu supervised the research.

Corresponding authors

Correspondence to Dan Chang  (常丹) or Jiankun Liu  (刘建坤).

Additional information

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, D., Liu, J. & Xu, A. Constitutive modelling of a coarse sand under unfrozen and frozen states. Acta Mech. Sin. 39, 423108 (2023). https://doi.org/10.1007/s10409-023-23108-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10409-023-23108-x

Navigation