Skip to main content
Log in

Experimental study on the response time of microthrust

微推力响应时间的实验研究

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

Micro-thrusters have been widely used in spacecraft drag-free and attitude control missions, such as gravity science and space gravitational wave detection, where micro thrusters ranging from µN to mN level are required with a response time shorter than 0.1 s. A null-type pendulum is developed to measure the response time of micro thrust in the paper, based on feedback control on pulse width modulation (PWM) of electrostatic fins (ESF). The displacement sensor, micro-controller and ESF are connected in a close-loop tuned by proportional-integral-derivative (PID) controller. Constraining the pendulum within a small deflection, the force exerted by ESF equals the thrust loaded by solenoid as a replacement of micro-thrusters. The PWM linearizes the relationship between excitation voltage and its thrust response and simplifies the calibration of a second order system after a z-domain fit of the transfer function. The experiments showed the deadtime of the null balance is less than 4 ms by template matching in a 2 Hz sine disturbance, and the rise time of 25 µN step response is about 98 ms. Besides, the paper also focuses on several key problems, which involved in the robust control of the second order system plus dead time, the vital high frequency noise to derivative term, the resolution boundaries to discriminate the low frequency balance’s noise from the thrust’s, the asymmetry buried in the null-balance using unilateral actuators, the uncertainties of response time in the magnitude and initial phase of thrust, as well as the difference in performance during the application of real thrusters. In the future, the trade-off between frequency and accuracy can be improved by updating the quantizers of PWM, and the null balance will be applied to the field such as vibration isolation and noise decoupling.

摘要

微推进器广泛用于航天器无拖曳和姿态控制任务中, 例如重力科学和空间引力波探测, 这些任务需要响应时间短于0.1秒的微 推进器, 其推力范围从N到mN量级. 本文开发了一种零位平衡摆, 基于静电梳(ESF)脉冲宽度调制(PWM)的反馈控制来测量微推力的 响应时间. 位移传感器、微控制器和ESF 通过比例积分微分(PID)控制器连接在闭环中进行调谐, 将扭摆限制在小偏转范围内, ESF施 加的力等于代替微推进器的电磁线圈所加载的推力. PWM使激励电压和其推力响应之间的关系线性化, 简化了二阶系统传递函数 的z域拟合之后的校准. 实验表明, 在2 Hz正弦扰动中, 零位平衡摆的死区时间小于4毫秒, 25 N阶跃响应的上升时间约为98毫秒. 此外, 本文还关注了几个关键问题, 包括对二阶系统加死区的鲁棒控制、控制微分项引起的高频噪声、摆的低频噪声与推力噪声的分辨率 界限、用单侧执行器在零位平衡中的不对称性、推力响应时间的幅度和初始相位的不确定性, 以及在应用于实际推进器时性能的差 异. 未来, 通过更新PWM量化位数, 可以改善频率和精度之间的折衷, 并将零平衡应用于振动隔离和噪声解耦等领域.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. E. Canuto, Drag-free and attitude control for the GOCE satellite, Automatica 44, 1766 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  2. E. Canuto, and L. Massotti, All-propulsion design of the drag-free and attitude control of the European satellite GOCE, Acta Astronaut. 64, 325 (2009).

    Article  Google Scholar 

  3. S. Y. Xu, L. X. Xu, L. X. Cong, Y. G. Li, and C. F. Qiao, First result of orbit verification of Taiji-1 hall micro thruster, Int. J. Mod. Phys. A 36, 2140013 (2021).

    Article  Google Scholar 

  4. J. E. Polk, A. Pancotti, T. Haag, S. King, M. Walker, J. Blakely, and J. Ziemer, Recommended practice for thrust measurement in electric propulsion testing, J. Propulsion Power 33, 539 (2017).

    Article  Google Scholar 

  5. Y. Hong, W. Zhou, and G. Wang, Methods of micro thrust measurement and analysis of its key issues, Acta Aeronauticaet Astronautica Sinica 34, 2287 (2013)

    Google Scholar 

  6. C. Wang, C. Guan, X. Liu, X. Wang, F. Li, and X. Yu, Dynamic-force extraction for micro-propulsion testing: Theory and experimental validation, Rev. Sci. Instruments 89, 115110 (2018).

    Article  Google Scholar 

  7. A. Kakami, K. Kashihara, S. Takeshida, and Y. Yano, A new thrust measurement method for evaluating higher frequency variation by applying acceleration measurement to null-balance method, Aerosp. Tech. Jpn. 14, 123 (2016).

    Article  Google Scholar 

  8. S. Rocca, C. Menon, and D. Nicolini, FEEP micro-thrust balance characterization and testing, Meas. Sci. Technol. 17, 711 (2006).

    Article  Google Scholar 

  9. K. G. Xu, and M. L. R. Walker, High-power, null-type, inverted pendulum thrust stand, Rev. Sci. Instruments 80, 055103 (2009).

    Article  Google Scholar 

  10. H. Zhang, B. Duan, L. Wu, Z. Hua, Z. Bao, N. Guo, Y. Ye, L. T. DeLuca, and R. Shen, Development of a steady-state microthrust measurement stand for microspacecrafts, Measurement 178, 109357 (2021).

    Article  Google Scholar 

  11. C. Yang, J. W. He, L. Duan, and Q. Kang, A torsional thrust stand for measuring the thrust response time of micro-Newton thrusters, Int. J. Mod. Phys. A 36, 2140015 (2021).

    Article  Google Scholar 

  12. L. Cong, J. Mu, Q. Liu, H. Wang, L. Wang, Y. Li, and C. Qiao, Thermal noise decoupling of micro-newton thrust measured in a torsion balance, Symmetry 13, 1357 (2021).

    Article  Google Scholar 

  13. Y. Wang, W. Ding, L. Cheng, Y. Li, C. Ge, R. Han, J. Yan, Z. Zhao, and A. Sun, Development and analysis of a novel printed circuit board electrostatic comb system for micro-newton thrust stand calibration, Rev. Sci. Instruments 89, 075104 (2018).

    Article  Google Scholar 

  14. Q. G. Wang, Z. Zhang, K. J. Astrom, and L. S. Chek, Guaranteed dominant pole placement with PID controllers, J. Process Control 19, 349 (2009).

    Article  Google Scholar 

  15. A. S. Hauksdóttir, and S. T. Siguresson, A Pole Placing PID Type Controller, IFAC-PapersOnLine 51, 942 (2018).

    Article  Google Scholar 

  16. Y. Xu, Z. Liu, C. Yang, W. Zhang, W. Zhu, S. Stichel, and X. Liu, Reduced-order modeling of train-curved-slab-track dynamics with the effects of fastening failures, Acta Mech. Sin. 38, 522039 (2022).

    Article  MathSciNet  Google Scholar 

  17. M. Ibrahim, and I. Hameed, Disturbance rejection and reference tracking of time delayed systems using Gramian controllability, Int. J. Dynam. Control 10, 810 (2022).

    Article  MathSciNet  Google Scholar 

  18. J. Chen, D. Ma, Y. Xu, and J. Chen, Delay robustness of PID control of second-order systems: Pseudoconcavity, exact delay margin, and performance tradeoff, IEEE Trans. Automat. Contr. 67, 1194 (2022).

    Article  MathSciNet  MATH  Google Scholar 

  19. Y. Su, C. Zheng, and P. Mercorelli, Simple saturated PID control for fast transient of motion systems, IFAC-PapersOnLine 53, 8985 (2020).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (Grant No. 2021YFC2202701), Major Scientific Instrument and Equipment Development Project of Chinese Academy of Sciences (Grant No. YJKYYQ20190059), and the Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Contributions

Linxiao Cong: Conceptualization, Data curation, Methodology, Investigation, Formal analysis, Software, Visualization, Writing–review & editing. >Jianchao Mu: Writing, Resources, Data curation, Visualization. Jianfei Long: Resources, Formal analysis, Software. Shu Bai: Resources, Validation. Ning Guo: Data curation, Investigation. Congfeng Qiao: Conceptualization, Funding acquisition, Project administration, Supervision.

Corresponding author

Correspondence to Congfeng Qiao  (乔从丰).

Additional information

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cong, L., Mu, J., Long, J. et al. Experimental study on the response time of microthrust. Acta Mech. Sin. 39, 123095 (2023). https://doi.org/10.1007/s10409-023-23095-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10409-023-23095-x

Navigation