Skip to main content
Log in

Data-driven approach for extracting the most probable exit trajectory of stochastic dynamical systems with non-Gaussian Lévy noise

提取受非高斯列维噪声扰动随机动力系统的最大似然转移路径 的数据驱动方法

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

The burgeoning data-driven techniques endow large potential to predict fairly practical or complex dynamical systems in various fields through massive data. Lévy noise, a more universal and intricate fluctuation model comparing with Gaussian white noise, is widely employed in many non-Gaussian cases to mimic bursting or hopping. In this manuscript, we present a systematic data-driven method to identify the most probable exit trajectory of a system that is perturbed both by Gaussian white noise and non-Gaussian Lévy noise. The main theoretical and numerical conceptions involve a set of extended Kramers-Moyal formulas and the Kolmogorov forward equation in classic dynamical systems theory as well as a supervise learning theory to solve the fitting problems by using the Cross Validation. We then give two examples to show the feasibility in detail, and do a brief bifurcation analysis for the most probable exit trajectory. The above approach will serve as a numerical correspondence to as well as verification for the relative theoretical research, and provide a referential resolution to the numerical identification of more transition indicators of this complex system, which is more general than the Gaussian diffusion process.

摘要

机器学习和数据科学技术的飞速发展, 很大程度上满足了许多领域通过数据预测比较实际或复杂的动力系统的需求. 列维噪 声是一个比高斯白噪声更普适和复杂的涨落模型, 它被广泛应用于许多非高斯情形来模拟爆炸或跳跃行为. 在本文中, 我们设计了一 个系统的数据驱动方法来识别受高斯白噪声和非高斯列维噪声扰动的系统的最大似然转移路径. 其中涉及的主要理论和数值概念包 括经典动力系统理论中的非局部Kramers-Moyal公式、非局部Fokker-Planck方程以及一个通过交叉验证解决稀疏回归问题的机器学习 框架. 接下来我们给出两个例子从细节方面展现了该方法的可操作性, 并且对最大似然转移路径做了简要的分岔分析. 该方法将作为 相关理论研究对应的数值方法以及数值角度的验证, 并为该高斯扩散过程的推广复杂系统的其他诸如平均离出时间或离出概率等动 力学指征的数值识别工作提供一些洞见.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. H. Zhang, Y. Xu, Q. Liu, and Y. Li, Deep learning framework for solving Fokker-Planck equations with low-rank separation representation, Eng. Appl. Artif. Intelligence 121, 106036 (2023).

    Article  Google Scholar 

  2. X. Wang, J. Feng, Q. Liu, Y. Li, and Y. Xu, Neural network-based parameter estimation of stochastic differential equations driven by Lévy noise, Phys. A-Stat. Mech. Appl. 606, 128146 (2022).

    Article  MATH  Google Scholar 

  3. M. I. Jordan, and T. M. Mitchell, Machine learning: Trends, perspectives, and prospects, Science 349, 255 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  4. V. Marx, The big challenges of big data, Nature 498, 255 (2013).

    Article  Google Scholar 

  5. M. O. Williams, I. G. Kevrekidis, and C. W. Rowley, A data-driven approximation of the koopman operator: extending dynamic mode decomposition, J. Nonlinear Sci. 25, 1307 (2015), arXiv: 1408.4408.

    Article  MathSciNet  MATH  Google Scholar 

  6. P. J. Schmid, Dynamic mode decomposition of numerical and experimental data, J. Fluid Mech. 656, 5 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  7. S. Klus, F. Nüske, S. Peitz, J. H. Niemann, C. Clementi, and C. Schütte, Data-driven approximation of the Koopman generator: Model reduction, system identification, and control, Physica D-Nonlinear Phenom. 406, 132416 (2020), arXiv: 1909.10638.

    Article  MathSciNet  MATH  Google Scholar 

  8. L. Boninsegna, F. Nüske, and C. Clementi, Sparse learning of stochastic dynamical equations, J. Chem. Phys. 148, 241723 (2018), arXiv: 1712.02432.

    Article  Google Scholar 

  9. S. L. Brunton, J. L. Proctor, and J. N. Kutz, Discovering governing equations from data by sparse identification of nonlinear dynamical systems, Proc. Natl. Acad. Sci. USA 113, 3932 (2016), arXiv: 1509.03580.

    Article  MathSciNet  MATH  Google Scholar 

  10. H. Schaeffer, R. Caflisch, C. D. Hauck, and S. Osher, Sparse dynamics for partial differential equations, Proc. Natl. Acad. Sci. USA 110, 6634 (2013), arXiv: 1212.4132.

    Article  MathSciNet  MATH  Google Scholar 

  11. S. Rudy, A. Alla, S. L. Brunton, and J. N. Kutz, Data-driven identification of parametric partial differential equations, SIAM J. Appl. Dyn. Syst. 18, 643 (2019), arXiv: 1806.00732.

    Article  MathSciNet  MATH  Google Scholar 

  12. P. D. Ditlevsen, Observation of α -stable noise induced millennial climate changes from an ice-core record, Geophys. Res. Lett. 26, 1441 (1999).

    Article  Google Scholar 

  13. J. M. Raser, and E. K. O’Shea, Noise in gene expression: Origins, consequences, and control, Science 309, 2010 (2005).

    Article  Google Scholar 

  14. B. Jourdain, S. Méléard, and W. A. Woyczynski, Lévy flights in evolutionary ecology, J. Math. Biol. 65, 677 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  15. T. H. Solomon, E. R. Weeks, and H. L. Swinney, Observation of anomalous diffusion and Lévy flights in a two-dimensional rotating flow, Phys. Rev. Lett. 71, 3975 (1993).

    Article  Google Scholar 

  16. E. R. Weeks, T. Solomon, J. S. Urbach, and H. L. Swinney, Observation of anomalous diffusion and lévy flights, in: Lévy Flights and Related Topics in Physics (Springer, Nice, 1995), pp. 51–71.

    Chapter  MATH  Google Scholar 

  17. W. A. Woyczyński, Lévy processes in the physical sciences, in: Lévy Processes (Springer, Boston, 2001), pp. 241–266.

    Chapter  MATH  Google Scholar 

  18. G. M. Viswanathan, V. Afanasyev, S. V. Buldyrev, S. Havlin, M. G. E. da Luz, E. P. Raposo, and H. E. Stanley, Lévy flights in random searches, Phys. A-Stat. Mech. Appl. 282, 1 (2000).

    Article  Google Scholar 

  19. Y. Li, and J. Duan, A data-driven approach for discovering stochastic dynamical systems with non-Gaussian Lévy noise, Phys. D-Nonlinear Phen. 417, 132830 (2021), arXiv: 2005.03769.

    Article  MATH  Google Scholar 

  20. Y. Li, and J. Duan, Extracting governing laws from sample path data of non-Gaussian stochastic dynamical systems, J. Stat. Phys. 186, 30 (2022), arXiv: 2107.10127.

    Article  MathSciNet  MATH  Google Scholar 

  21. Y. H. Sun, Y. G. Yang, and W. Xu, Stochastic P-bifurcations of a noisy nonlinear system with fractional derivative element, Acta Mech. Sin. 37, 507 (2021).

    Article  MathSciNet  Google Scholar 

  22. Q. Jin, and Y. Ren, Nonlinear size-dependent dynamic instability and local bifurcation of FG nanotubes transporting oscillatory fluids, Acta Mech. Sin. 38, 521513 (2022).

    Article  MathSciNet  Google Scholar 

  23. N. Song, Y. Lei, and D. Cao, Dynamics analysis of higher-order soliton solutions for the coupled mixed derivative nonlinear Schrödinger equation, Acta Mech. Sin. 38, 521500 (2022).

    Article  Google Scholar 

  24. M. I. Freidlin, and A. D. Wentzell, Random Perturbations of Dynamical Systems (Springer, Berlin, Heidelberg, 2012), pp. 457–476.

    Book  MATH  Google Scholar 

  25. D. Dürr, and A. Bach, The Onsager-Machlup function as Lagrangian for the most probable path of a diffusion process, Commun. Math. Phys. 60, 153 (1978).

    Article  MathSciNet  MATH  Google Scholar 

  26. L. Onsager, and S. Machlup, Fluctuations and Irreversible Processes, Phys. Rev. 91, 1505 (1953).

    Article  MathSciNet  MATH  Google Scholar 

  27. Y. Chao, and J. Duan, The Onsager-Machlup function as Lagrangian for the most probable path of a jump-diffusion process, Nonlinearity 32, 3715 (2019), arXiv: 1812.06409.

    Article  MathSciNet  MATH  Google Scholar 

  28. K. L. C. Hunt, and J. Ross, Path integral solutions of stochastic equations for nonlinear irreversible processes: The uniqueness of the ther-modynamic Lagrangian, J. Chem. Phys. 75, 976 (1981).

    Article  MathSciNet  Google Scholar 

  29. O. Zeitouni, and A. Dembo, A maximum a posteriori estimator for trajectories of diffusion processes, Stochastics 20, 221 (1987).

    Article  MathSciNet  MATH  Google Scholar 

  30. Z. Wang, and S. T. S. Bukkapatnam, A dirichlet process gaussian state machine model for change detection in transient processes, Technometrics 60, 373 (2018).

    Article  MathSciNet  Google Scholar 

  31. Z. Wang, S. T. S. Bukkapatnam, S. R. T. Kumara, Z. Kong, and Z. Katz, Change detection in precision manufacturing processes under transient conditions, CIRP Ann. 63, 449 (2014).

    Article  Google Scholar 

  32. D. Wu, M. Fu, and J. Duan, Discovering mean residence time and escape probability from data of stochastic dynamical systems, Chaos 29, 093122 (2019), arXiv: 1909.00901.

    Article  MathSciNet  MATH  Google Scholar 

  33. Z. Schuss, Theory and Applications of Stochastic Processes: An Analytical Approach (Springer Science & Business Media, New York, 2009).

    MATH  Google Scholar 

  34. Y. Zheng, F. Yang, J. Duan, X. Sun, L. Fu, and J. Kurths, The maximum likelihood climate change for global warming under the influence of greenhouse effect and Lévy noise, Chaos-An Interdiscip. J. Nonlinear Sci. 30, 013132 (2020).

    MATH  Google Scholar 

  35. T. Gao, J. Duan, and X. Li, Fokker-Planck equations for stochastic dynamical systems with symmetric Lévy motions, Appl. Math. Comput. 278, 1 (2016).

    MathSciNet  MATH  Google Scholar 

  36. G. S. Jiang, and C. W. Shu, Efficient implementation of weighted ENO schemes, J. Comput. Phys. 126, 202 (1996).

    Article  MathSciNet  MATH  Google Scholar 

  37. G. S. Jiang, and D. Peng, Weighted ENO schemes for Hamilton-Jacobi equations, SIAM J. Sci. Comput. 21, 2126 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  38. C. W. Shu, and S. Osher, Efficient implementation of essentially non-oscillatory shock-capturing schemes, J. Comput. Phys. 77, 439 (1988).

    Article  MathSciNet  MATH  Google Scholar 

  39. M. Veillette, Simulation of the lévy noise, https://github.com/markveillette/stbl (2014).

  40. J. Duan, An Introduction to Stochastic Dynamics (Cambridge University Press, Cambridge, 2015).

    MATH  Google Scholar 

Download references

Acknowledgements This work was supported by the National Natural Science Foundation of China (Grant No. 12172167) and A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Author information

Authors and Affiliations

Authors

Contributions

Author contributions Linghongzhi Lu contributed to the conceptualization, data curation, formal analysis, investigation, methodology, software, validation, writing of the original draft, and writing-review and editing. Yang Li contributed to the conceptualization, methodology, formal analysis, writing-review and supervision. Xianbin Liu contributed to writing-review and supervision, funding acquisition.

Corresponding author

Correspondence to Xianbin Liu  (刘先斌).

Ethics declarations

Conflict of interest On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, L., Li, Y. & Liu, X. Data-driven approach for extracting the most probable exit trajectory of stochastic dynamical systems with non-Gaussian Lévy noise. Acta Mech. Sin. 40, 523094 (2024). https://doi.org/10.1007/s10409-023-23094-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10409-023-23094-x

Keywords

Navigation