Skip to main content
Log in

In-plane crushing behaviour of hierarchical honeycombs: finite element simulation and analytical modelling

层级蜂窝结构面内压缩行为研究: 有限元模拟和理论分析

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

This work reports on the in-plane crushing behaviour of second-order hierarchical honeycombs with triangle substructures (SHT). Here, cell walls of a conventional hexagonal honeycomb were replaced with two-layer equilateral triangles as substructures. Finite element (FE) simulations and analytical modelling were conducted, and a good agreement was found between FE and analytical results. The response of SHT was compared with that of other patterned honeycombs. Three deformation modes were observed under different loading speeds, and critical velocities for mode transforming were obtained qualitatively. The effect of loading speed and relative density on crushing stress and energy absorption capacity was also discussed.

摘要

本文研究了具有三角形子结构的二阶层级蜂窝结构(SHT)的面内压缩特性. 在此过程中, 正六边形蜂窝结构的细胞壁被替换成 两层等边三角形作为子结构. 研究结果表明, 有限元(FE)模拟和理论分析结果具有良好的一致性. 为了展现SHT优越的压缩性能, 我们 将其与不同种类蜂窝结构的压缩性特性进行了比较. 在不同的加载速度下, SHT展现出三种变形模式, 并定性获得了模式转换的临界速 度. 此外, 本文还进一步讨论了加载速度和相对密度对压缩平台应力和能量吸收能力的影响.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. T. Wierzbicki, Crushing analysis of metal honeycombs, Int. J. Impact Eng. 1, 157 (1983).

    Article  Google Scholar 

  2. Q. Li, W. Tian, D. Wu, and W. Gao, Nonlinear dynamic stability analysis of imperfect architected cellular sandwich plate under impact loading, Acta Mech. Sin. 39, 722333 (2023).

    Article  MathSciNet  Google Scholar 

  3. N. S. Ha, and G. Lu, Thin-walled corrugated structures: A review of crashworthiness designs and energy absorption characteristics, Thin-Walled Struct. 157, 106995 (2020).

    Article  Google Scholar 

  4. Y. Liu, and X. C. Zhang, The influence of cell micro-topology on the in-plane dynamic crushing of honeycombs, Int. J. Impact Eng. 36, 98 (2009).

    Article  Google Scholar 

  5. W. Li, D. Atsushi, Y. H. Oh, S. Jirathearanat, Z. A. Wu, and B. W. Chua, Influences of skin thickness, core topology, depth and direction on flexural deformation and ductile failure of Al honeycomb-based sandwich structures, Compos. Part B-Eng. 239, 109957 (2022).

    Article  Google Scholar 

  6. L. Hu, F. You, and T. Yu, Effect of cell-wall angle on the in-plane crushing behaviour of hexagonal honeycombs, Mater. Des. (1980-2015) 46, 511 (2013).

    Article  Google Scholar 

  7. F. Gao, Q. Zeng, J. Wang, Z. Liu, and J. Liang, Compressive properties and energy absorption of BCC lattice structures with bio-inspired gradient design, Acta Mech. Sin. 38, 421345 (2022).

    Article  Google Scholar 

  8. J. Zhang, and G. Lu, Dynamic tensile behaviour of re-entrant honeycombs, Int. J. Impact Eng. 139, 103497 (2020).

    Article  Google Scholar 

  9. H. Nakamoto, T. Adachi, and W. Araki, In-plane impact behavior of honeycomb structures filled with linearly arranged inclusions, Int. J. Impact Eng. 36, 1019 (2009).

    Article  Google Scholar 

  10. H. Yin, W. Zhang, L. Zhu, F. Meng, J. Liu, and G. Wen, Review on lattice structures for energy absorption properties, Compos. Struct. 304, 116397 (2022).

    Article  Google Scholar 

  11. A. Ajdari, H. Nayeb-Hashemi, and A. Vaziri, Dynamic crushing and energy absorption of regular, irregular and functionally graded cellular structures, Int. J. Solids Struct. 48, 506 (2011).

    Article  MATH  Google Scholar 

  12. Z. Li, Y. Jiang, T. Wang, L. Wang, W. Zhuang, and D. Liu, In-plane crushing behaviors of piecewise linear graded honeycombs, Compos. Struct. 207, 425 (2019).

    Article  Google Scholar 

  13. H. L. Tan, Z. C. He, E. Li, X. W. Tan, A. G. Cheng, and Q. Q. Li, Energy absorption characteristics of three-layered sandwich panels with graded re-entrant hierarchical honeycombs cores, Aerosp. Sci. Tech. 106, 106073 (2020).

    Article  Google Scholar 

  14. H. Mozafari, H. Molatefi, V. Crupi, G. Epasto, and E. Guglielmino, In plane compressive response and crushing of foam filled aluminum honeycombs, J. Compos. Mater. 49, 3215 (2015).

    Article  Google Scholar 

  15. Q. Liu, J. Fu, J. Wang, J. Ma, H. Chen, Q. Li, and D. Hui, Axial and lateral crushing responses of aluminum honeycombs filled with EPP foam, Compos. Part B-Eng. 130, 236 (2017).

    Article  Google Scholar 

  16. N. S. Ha, and G. Lu, A review of recent research on bio-inspired structures and materials for energy absorption applications, Compos. Part B-Eng. 181, 107496 (2020).

    Article  Google Scholar 

  17. K. Liu, Z. Yu, K. Wang, and L. Jing, Crashworthiness of bamboo-inspired circular tubes used for the energy absorber of rail vehicles, Acta Mech. Sin. 38, 122014 (2022).

    Article  Google Scholar 

  18. C. C. Tung, Y. S. Chen, W. F. Chen, and P. Y. Chen, Bio-inspired, helically oriented tubular structures with tunable deformability and energy absorption performance under compression, Mater. Des. 222, 111076 (2022).

    Article  Google Scholar 

  19. A. Ajdari, B. H. Jahromi, J. Papadopoulos, H. Nayeb-Hashemi, and A. Vaziri, Hierarchical honeycombs with tailorable properties, Int. J. Solids Struct. 49, 1413 (2012).

    Article  Google Scholar 

  20. B. Haghpanah, R. Oftadeh, J. Papadopoulos, and A. Vaziri, Self-similar hierarchical honeycombs, Proc. R. Soc. A 469, 20130022 (2013).

    Article  Google Scholar 

  21. C. M. Taylor, C. W. Smith, W. Miller, and K. E. Evans, The effects of hierarchy on the in-plane elastic properties of honeycombs, Int. J. Solids Struct. 48, 1330 (2011).

    Article  MATH  Google Scholar 

  22. C. M. Taylor, C. W. Smith, W. Miller, and K. E. Evans, Functional grading in hierarchical honeycombs: Density specific elastic performance, Compos. Struct. 94, 2296 (2012).

    Article  Google Scholar 

  23. Q. He, J. Feng, and H. Zhou, A numerical study on the in-plane dynamic crushing of self-similar hierarchical honeycombs, Mech. Mater. 138, 103151 (2019).

    Article  Google Scholar 

  24. S. Li, Z. Liu, V. P. W. Shim, Y. Guo, Z. Sun, X. Li, and Z. Wang, Inplane compression of 3D-printed self-similar hierarchical honeycombs —static and dynamic analysis, Thin-Walled Struct. 157, 106990 (2020).

    Article  Google Scholar 

  25. J. Qiao, and C. Chen, In-plane crushing of a hierarchical honeycomb, Int. J. Solids Struct. 85-86, 57 (2016).

    Article  Google Scholar 

  26. F. Côté, B. P. Russell, V. S. Deshpande, and N. A. Fleck, The through-thickness compressive strength of a composite sandwich panel with a hierarchical square honeycomb sandwich core, J. Appl. Mech. 76, 061004 (2009).

    Article  Google Scholar 

  27. W. Zhang, S. Yin, T. X. Yu, and J. Xu, Crushing resistance and energy absorption of pomelo peel inspired hierarchical honeycomb, Int. J. Impact Eng. 125, 163 (2019).

    Article  Google Scholar 

  28. G. Sun, H. Jiang, J. Fang, G. Li, and Q. Li, Crashworthiness of vertex based hierarchical honeycombs in out-of-plane impact, Mater. Des. 110, 705 (2016).

    Article  Google Scholar 

  29. J. Fang, G. Sun, N. Qiu, T. Pang, S. Li, and Q. Li, On hierarchical honeycombs under out-of-plane crushing, Int. J. Solids Struct. 135, 1 (2018).

    Article  Google Scholar 

  30. H. Yin, X. Huang, F. Scarpa, G. Wen, Y. Chen, and C. Zhang, Inplane crashworthiness of bio-inspired hierarchical honeycombs, Compos. Struct. 192, 516 (2018).

    Article  Google Scholar 

  31. K. Song, D. Li, C. Zhang, T. Liu, Y. Tang, Y. M. Xie, and W. Liao, Bio-inspired hierarchical honeycomb metastructures with superior mechanical properties, Compos. Struct. 304, 116452 (2023).

    Article  Google Scholar 

  32. L. L. Hu, and T. X. Yu, Mechanical behavior of hexagonal honeycombs under low-velocity impact—theory and simulations, Int. J. Solids Struct. 50, 3152 (2013).

    Article  Google Scholar 

  33. X. Deng, and S. Qin, In-plane energy absorption characteristics and mechanical properties of novel re-entrant honeycombs, Compos. Struct. 313, 116951 (2023).

    Article  Google Scholar 

  34. I. Ivañez, L. M. Fernandez-Cañadas, and S. Sanchez-Saez, Compressive deformation and energy-absorption capability of aluminium honeycomb core, Compos. Struct. 174, 123 (2017).

    Article  Google Scholar 

  35. D. Ruan, G. Lu, B. Wang, and T. X. Yu, In-plane dynamic crushing of honeycombs—a finite element study, Int. J. Impact Eng. 28, 161 (2003).

    Article  Google Scholar 

  36. C. Tekoglu, and P. Onck, Size effects in two-dimensional Voronoi foams: A comparison between generalized continua and discrete models, J. Mech. Phys. Solids 56, 3541 (2008).

    Article  MATH  Google Scholar 

  37. H. X. Wu, Y. Liu, and X. C. Zhang, In-plane crushing behavior and energy absorption design of composite honeycombs, Acta Mech. Sin. 34, 1108 (2018).

    Article  MathSciNet  Google Scholar 

  38. X. Niu, F. Xu, Z. Zou, T. Fang, S. Zhang, and Q. Xie, In-plane dynamic crashing behavior and energy absorption of novel bionic honeycomb structures, Compos. Struct. 299, 116064 (2022).

    Article  Google Scholar 

  39. F. Jiang, S. Yang, C. Ding, and C. Qi, Quasi-static crushing behavior of novel circular double arrowed auxetic honeycombs: Experimental test and numerical simulation, Thin-Walled Struct. 177, 109434 (2022).

    Article  Google Scholar 

  40. S. R. Reid, and C. Peng, Dynamic uniaxial crushing of wood, Int. J. Impact Eng. 19, 531 (1997).

    Article  Google Scholar 

  41. X. Yang, X. Xi, Q. Pan, and H. Liu, In-plane dynamic crushing of a novel circular-celled honeycomb nested with petal-shaped mesostructure, Compos. Struct. 226, 111219 (2019).

    Article  Google Scholar 

  42. X. M. Qiu, J. Zhang, and T. X. Yu, Collapse of periodic planar lattices under uniaxial compression, part II: Dynamic crushing based on finite element simulation, Int. J. Impact Eng. 36, 1231 (2009).

    Article  Google Scholar 

  43. H. L. Tan, Z. C. He, K. X. Li, E. Li, A. G. Cheng, and B. Xu, Inplane crashworthiness of re-entrant hierarchical honeycombs with negative Poisson’s ratio, Compos. Struct. 229, 111415 (2019).

    Article  Google Scholar 

  44. D. Sun, W. Zhang, Y. Zhao, G. Li, Y. Xing, and G. Gong, In-plane crushing and energy absorption performance of multi-layer regularly arranged circular honeycombs, Compos. Struct. 96, 726 (2013).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Australian Research Council through Discovery (Grant Nos. DP210103323 and DE220101094), the National Natural Science Foundation of China (Grant Nos. 52078152 and 12002095), and Guangzhou Government-University Union Fund (Grant No. 202201020532).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guoxing Lu  (卢国兴) or Li Wang  (王丽).

Additional information

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Author contributions

Yuyang Wang: Conceptualization, Data curation, Visualization, Formal analysis, Methodology, Validation, Writing — original draft & editing. Jianjun Zhang: Conceptualization, Data curation, Formal analysis, Funding, Writing — review & editing. Guoxing Lu: Conceptualization, Methodology, Funding, Project administration, Supervision, Writing — review & editing. Ngoc San Ha: Data curation, Methodology, Formal analysis, Writing — review & editing. Xinmei Xiang: Methodology, Formal analysis, Funding, Editing. Li Wang: Project administration, Supervision, Writing — review & editing.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Zhang, J., Lu, G. et al. In-plane crushing behaviour of hierarchical honeycombs: finite element simulation and analytical modelling. Acta Mech. Sin. 39, 423067 (2023). https://doi.org/10.1007/s10409-023-23067-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10409-023-23067-x

Navigation