Skip to main content
Log in

Vortex-induced energy loss of a mixed-flow waterjet pump under different operating conditions

不同流量工况下混流式喷水推进泵涡流所致能量损失

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

Mixed-flow waterjet pumps (M-FWPs) are core units of high-speed ship power propulsion. When operated under non-optimal operating conditions, the unstable flow generated in the flow passage leads to a reduction in pump efficiency. This article investigates the energy loss mechanism of M-FWPs under different operating conditions through entropy production theory based on numerical simulations. The analyses of the simulation data show that the turbulence dissipation (EPTD) makes the dominant contribution to the entropy production rate. By comparing the correlations of velocity gradient, vorticity, and turbulent kinetic energy (TKE) with the EPTD, it is discovered that under non-optimal operating conditions, the inflow angle at the impeller inlet does not match the blade inlet angle at the leading edge of the blade, resulting in unsteady flow structures such as flow separation and large-scale vortices. The increase in vorticity and TKE caused by these unsteady structures ultimately causes the generation of turbulent entropy. Further examination of the enstrophy transport equation indicates that the relative vortex generation term plays a dominant role in the development of the unsteady flow in the flow passage.

摘要

混流式喷水推进泵(M-FWPs)是高速船舶动力推进的核心部件. 当其在非最优工况下运行时, 流道中的不稳定流动会导致泵效 率的下降. 本文通过数值模拟, 基于熵产理论研究了在不同工况下的能量损失机理. 对仿真数据的分析表明, 熵产率主要由湍流耗散产 生. 通过比较速度梯度、涡度、湍动能以及湍动能耗散的相关性, 发现在非最优工况下, 由于叶轮进口入流角与叶片前缘进口角的不 匹配, 会导致流动分离和大尺度漩涡等非稳定流动结构的发生. 这些非定常流动现象所导致的涡量和湍动能增强最终引起了熵增. 进 一步检验拟涡能的输运发现涡生成项在非定常流动的产生过程中扮演了主要角色.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. W. G. Park, J. H. Jang, H. H. Chun, and M. C. Kim, Numerical flow and performance analysis of waterjet propulsion system, Ocean Eng. 32, 1740 (2005).

    Article  Google Scholar 

  2. R. Huang, R. Zhang, Y. Wang, X. Luo, and L. Zhu, Experimental and numerical investigations into flow features in an intake duct for the waterjet propulsion under mooring conditions, Acta Mech. Sin. 37, 826 (2021).

    Article  Google Scholar 

  3. J. Hong, and A. Abraham, Snow-powered research on utility-scale wind turbine flows, Acta Mech. Sin. 36, 339 (2020).

    Article  MATH  Google Scholar 

  4. M. Zhang, F. Feng, M. Wang, Z. Guo, Z. Kang, and B. Huang, Investigation of hysteresis effect of cavitating flow over a pitching Clark-Y hydrofoil, Acta Mech. Sin. 38, 321382 (2022).

    Article  MathSciNet  Google Scholar 

  5. W. Liu, Z. Ji, D. Guo, G. Yang, G. Zhou, and K. Ren, Effects of bottom deflectors on aerodynamic drag reduction of a high-speed train, Acta Mech. Sin. 38, 321251 (2022).

    Article  Google Scholar 

  6. H. Wu, F. Soranna, T. Michael, J. Katz, and S. Jessup, Cavitation in the tip region of the rotor blades within a waterjet pump, Fluids Eng. Div. Summer Meet. 48418, 193 (2008).

    Google Scholar 

  7. H. Wu, R. L. Miorini, and J. Katz, Analysis of turbulence in the tip region of a waterjet pump rotor, Fluids Eng. Div. Summer Meet. 49484, 699 (2010).

    Google Scholar 

  8. H. Wu, R. L. Miorini, and J. Katz, Measurements of the tip leakage vortex structures and turbulence in the meridional plane of an axial water-jet pump, Exp. Fluids 50, 989 (2011).

    Article  Google Scholar 

  9. R. L. Miorini, H. Wu, and J. Katz, The internal structure of the tip leakage vortex within the rotor of an axial waterjet pump, In Turbo Expo: Power for Land, Sea, and Air 44021, 403 (2010).

    Google Scholar 

  10. Q. Guo, X. Huang, and B. Qiu, Numerical investigation of the blade tip leakage vortex cavitation in a waterjet pump, Ocean Eng. 187, 106170 (2019).

    Article  Google Scholar 

  11. R. Huang, B. Ji, X. Luo, Z. Zhai, and J. Zhou, Numerical investigation of cavitation-vortex interaction in a mixed-flow waterjet pump, J. Mech. Sci. Technol. 29, 3707 (2015).

    Article  Google Scholar 

  12. R. Huang, Y. Wang, T. Du, X. Luo, W. Zhang, and Y. Dai, Mechanism analyses of the unsteady vortical cavitation behaviors for a waterjet pump in a non-uniform inflow, Ocean Eng. 233, 108798 (2021).

    Article  Google Scholar 

  13. P. Cao, Y. Wang, C. Kang, G. Li, and X. Zhang, Investigation of the role of non-uniform suction flow in the performance of water-jet pump, Ocean Eng. 140, 258 (2017).

    Article  Google Scholar 

  14. H. Herwig, D. Gloss, and T. Wenterodt, A new approach to understanding and modelling the influence of wall roughness on friction factors for pipe and channel flows, J. Fluid Mech. 613, 35 (2008).

    Article  MATH  Google Scholar 

  15. H. Guan, W. Jiang, Y. Wang, H. Tian, T. Li, and D. Chen, Numerical simulation and experimental investigation on the influence of the clocking effect on the hydraulic performance of the centrifugal pump as turbine, Renew. Energy 168, 21 (2021).

    Article  Google Scholar 

  16. B. Yang, B. Li, H. Chen, and Z. Liu, Entropy production analysis for the clocking effect between inducer and impeller in a high-speed centrifugal pump, Proc. Inst. Mech. Eng. Part C-J. Mech. Eng. Sci. 233, 5302 (2019).

    Article  Google Scholar 

  17. K. Kan, H. Chen, Y. Zheng, D. Zhou, M. Binama, and J. Dai, Transient characteristics during power-off process in a shaft extension tubular pump by using a suitable numerical model, Renew. Energy 164, 109 (2021).

    Article  Google Scholar 

  18. S. Shen, Z. Qian, and R. K. Agarwal, in Numerical analysis of fluid dynamics of tip leakage vortex with different gap widths in an axial flow pump: Proceedings of the 2018 AIAA Aerospace Sciences Meeting, Kissimmee, 2018.

  19. Y. Wang, and W. J. Wang, Applicability of eddy viscosity turbulence models in low specific speed centrifugal pump, IOP Conf. Ser.-Earth Environ. Sci. 15, 062013 (2012).

    Article  Google Scholar 

  20. F. R. Menter, Two-equation eddy-viscosity turbulence models for engineering applications, AIAA J. 32, 1598 (1994).

    Article  Google Scholar 

  21. R. Tao, R. Xiao, F. Wang, and W. Liu, Improving the cavitation inception performance of a reversible pump-turbine in pump mode by blade profile redesign: Design concept, method and applications, Renew. Energy 133, 325 (2019).

    Article  Google Scholar 

  22. C. Wang, F. Wang, C. Li, W. Chen, H. Wang, and L. Lu, Investigation on energy conversion instability of pump mode in hydropneumatic energy storage system, J. Energy Storage 53, 105079 (2022).

    Article  Google Scholar 

  23. F. Stern, R. V. Wilson, H. W. Coleman, and E. G. Paterson, Comprehensive approach to verification and validation of CFD simulations—Part 1: Methodology and procedures, J. Fluids Eng. 123, 793 (2001).

    Article  Google Scholar 

  24. C. J. Roy, Grid convergence error analysis for mixed-order numerical schemes, AIAA J. 41, 595 (2003).

    Article  Google Scholar 

  25. X. Gan, G. Pavesi, J. Pei, S. Yuan, W. Wang, and T. Yin, Parametric investigation and energy efficiency optimization of the curved inlet pipe with induced vane of an inline pump, Energy 240, 122824 (2022).

    Article  Google Scholar 

  26. S. Shen, Z. Qian, and B. Ji, Numerical analysis of mechanical energy dissipation for an axial-flow pump based on entropy generation theory, Energies 12, 4162 (2019).

    Article  Google Scholar 

  27. K. Kan, Q. Zhang, Z. Xu, Y. Zheng, Q. Gao, and L. Shen, Energy loss mechanism due to tip leakage flow of axial flow pump as turbine under various operating conditions, Energy 255, 124532 (2022).

    Article  Google Scholar 

  28. L. Ji, W. Li, W. Shi, H. Chang, and Z. Yang, Energy characteristics of mixed-flow pump under different tip clearances based on entropy production analysis, Energy 199, 117447 (2020).

    Article  Google Scholar 

  29. F. Kock, and H. Herwig, Local entropy production in turbulent shear flows: A high-Reynolds number model with wall functions, Int. J. Heat Mass Transfer 47, 2205 (2004).

    Article  MATH  Google Scholar 

  30. F. Kock, and H. Herwig, Entropy production calculation for turbulent shear flows and their implementation in cfd codes, Int. J. Heat Fluid Flow 26, 672 (2005).

    Article  Google Scholar 

  31. L. Duan, X. Wu, and Z. Ji, Application of entropy generation method for analyzing energy loss of cyclone separator, CIESC J. 65, 583 (2014).

    Google Scholar 

  32. L. Duan, X. Wu, Z. Ji, and Q. Fang, Entropy generation analysis on cyclone separators with different exit pipe diameters and inlet dimensions, Chem. Eng. Sci. 138, 622 (2015).

    Article  Google Scholar 

  33. W. Li, E. Li, L. Ji, L. Zhou, W. Shi, and Y. Zhu, Mechanism and propagation characteristics of rotating stall in a mixed-flow pump, Renew. Energy 153, 74 (2020).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 52009033 and 11972038), the Natural Science Foundation of Jiangsu Province (Grant No. BK20200509), and the Postdoctoral Research Foundation of China (Grant Nos. 2022M711021 and 2021M690876).

Author information

Authors and Affiliations

Authors

Contributions

Kan Kan designed the research, offered methodology and computing resources, carried out all the simulations and results analysis, wrote the first draft of the manuscript, and offered funding acquisition. Yuhang Xu carried out all the simulations and results analysis, wrote the first draft of the manuscript. Hui Xu offered computing resources, verified the results, wrote the first draft of the manuscript and supervised the research. Jianggang Feng offered computing resources, verified the results and supervised the research. Zixuan Yang designed the research, offered methodology, analyzed the results, supervised the research, offered funding acquisition and revised the final version.

Corresponding author

Correspondence to Zixuan Yang  (杨子轩).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kan, K., Xu, Y., Xu, H. et al. Vortex-induced energy loss of a mixed-flow waterjet pump under different operating conditions. Acta Mech. Sin. 39, 323064 (2023). https://doi.org/10.1007/s10409-023-23064-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10409-023-23064-x

Keywords

Navigation