Skip to main content
Log in

Monitoring of curing process of concrete based on modulus and internal friction measurement using a quantitative electromechanical impedance method

基于定量机电阻抗方法的混凝土固化过程模量和内耗测量监测

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

The determination of the condensation state of fresh concrete plays a crucial role in controlling the quality and safety of construction. In practice, it usually takes about 28 days for concrete to cure, during which the concrete mixture is hardened and strengthened until it reaches the usable standards. The traditional methods for monitoring the curing process of concrete usually only measure the Young’s modulus using the ultrasonic method. In this work, we propose a real-time concrete curing monitoring method based on accurate measurement of modulus and internal friction using a quantitative electromechanical impedance method (Q-EMI). Results show that both the modulus and internal friction can be used to monitor the curing process of concrete, and the modulus measurement is more accurate as it is less influenced by supporting conditions. For a specific concrete, the Young’s modulus turns to be stable after 4 days and the shear modulus cannot be stable until 7 days later, thus shear modulus measurement is more suitable for monitoring the curing process of concrete. In addition, it is found that the curing time is quite sensitive to the sand/cement ratio. This work provides a convenient approach to monitoring the curing process of concrete using small samples.

摘要

测定新鲜混凝土凝固状态对于控制建筑质量和安全至关重要. 实际上, 混凝土通常需要约28天时间进行养护, 期间混凝土凝固 并加强, 直至达到可使用标准. 传统的混凝土养护过程通常使用超声波等方法测量杨氏模量. 在这项工作中, 我们提出了一种基于定量 机电阻抗方法(Q-EMI)精确测量模量和内耗的实时混凝土养护监测方法. 结果表明, 模量和内耗均可用于监测混凝土养护过程, 且模量 测量更准确, 因其受支撑条件影响较小. 对于特定的混凝土, 杨氏模量在4天后趋于稳定, 剪切模量在7天后才能稳定, 因此剪切模量测 量更适合用于监测混凝土养护过程. 此外, 还发现养护时间对砂/水泥比非常敏感. 这项工作为使用小样本监测混凝土养护过程提供了 一种便捷方法.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. J. Krząkała, P. Łaziński, M. Gerges, Ł. Pyrzowski, and G. Grządzie-la, Influence of actual curing conditions on mechanical properties of concrete in bridge superstructures, Materials 16, 54 (2023).

    Article  Google Scholar 

  2. R. Ma, Q. Zhang, Y. Hu, Z. An, T. Yin, Q. Li, D. Huang, J. Ma, and Z. Huangfu, Intelligent control method of temperature stress and transverse joint behaviors of concrete arch dams (in Chinese), J. Hydroelectric Eng. 40, 100 (2021).

    Google Scholar 

  3. S. Gu, Y. Wu, X. Wang, S. Li, C. Ding, and Y. Wu, Nondestructive testing of strength of sleeve grouting material in prefabricated structure based on surface hardness method, Constr. Build. Mater. 263, 120675 (2020).

    Article  Google Scholar 

  4. M. Taman, M. Abd Elaty, and R. N. Behiry, Codes applicability of estimating the FRC compressive strength by the core-drilling method, Constr. Build. Mater. 330, 127227 (2022).

    Article  Google Scholar 

  5. S. H. Lessly, R. Senthil, and B. Krishnakumar, A study on the effect of reinforcement on the strength of concrete core, Mater. Today-Proc. 45, 6476 (2021).

    Article  Google Scholar 

  6. B. Tremper, The measurement of concrete strength by embedded pull-out bars, in: Proceedings-American Society for Testing and Materials (1944), p. 880.

  7. Y. Wang, Z. Wang, X. Liang, and M. An, Experimental and numerical studies on dynamic compressive behavior of reactive powder concretes, Acta Mech. Solid Sin. 21, 420 (2008).

    Article  Google Scholar 

  8. W. R. Tang, Z. W. Zhu, T. T. Fu, Z. W. Zhou, and Z. H. Shangguan, Dynamic experiment and numerical simulation of frozen soil under confining pressure, Acta Mech. Sin. 36, 1302 (2020).

    Article  Google Scholar 

  9. S. W. Shin, C. B. Yun, J. S. Popovics, and J. H. Kim, Improved Rayleigh wave velocity measurement for nondestructive early-age concrete monitoring, Res. Nondestruct. Eval. 18, 45 (2007).

    Article  Google Scholar 

  10. N. Robeyst, C. U. Grosse, and N. De Belie, Factors affecting the monitoring of the early setting of concrete by ultrasonic P-waves, in: Nondestructive Testing of Materials and Structures (Springer Netherlands, Dordrecht, 2013), pp. 423–429..

    Google Scholar 

  11. C. K. Soh, and S. Bhalla, Calibration of piezo-impedance transducers for strength prediction and damage assessment of concrete, Smart Mater. Struct. 14, 671 (2005).

    Article  Google Scholar 

  12. S. Labouret, I. Looten-Baquet, C. Bruneel, and J. Frohly, Ultrasound method for monitoring rheology properties evolution of cement, Ultrasonics 36, 205 (1998).

    Article  Google Scholar 

  13. Y. Akkaya, T. Voigt, K. V. Subramaniam, and S. P. Shah, Nondestructive measurement of concrete strength gain by an ultrasonic wave reflection method, Mat. Struct. 36, 507 (2003).

    Article  Google Scholar 

  14. T. Voigt, Y. Akkaya, and S. P. Shah, Determination of early age mortar and concrete strength by ultrasonic wave reflections, J. Mater. Civ. Eng. 15, 247 (2003).

    Article  Google Scholar 

  15. G. Park, H. Sohn, C. R. Farrar, and D. J. Inman, Overview of piezoelectric impedance-based health monitoring and path forward, Shock Vib. Dig. 35, 451 (2003).

    Article  Google Scholar 

  16. C. Liang, F. P. Sun, and C. A. Rogers, in: Coupled electromechanical analysis of piezoelectric ceramic actuator-driven systems: Determination of the actuator power consumption and system energy transfer: Proceedings of SPIE (SPIE, 1993), pp. 286–298.

  17. S. W. Shin, and T. K. Oh, Application of electro-mechanical impedance sensing technique for online monitoring of strength development in concrete using smart PZT patches, Constr. Build. Mater. 23, 1185 (2009).

    Article  Google Scholar 

  18. N. W. Kamaruzaman, and K. Muthusamy, Effect of curing regime on compressive strength of concrete containing malaysian laterite aggregate, Adv. Mater. Res. 626, 839 (2012).

    Article  Google Scholar 

  19. R. Tawie, and H. K. Lee, Monitoring the strength development in concrete by EMI sensing technique, Constr. Build. Mater. 24, 1746 (2010).

    Article  Google Scholar 

  20. T. Bansal, V. Talakokula, and K. Mathiyazhagan, Equivalent structural parameters based non-destructive prediction of sustainable concrete strength using machine learning models via piezo sensor, Measurement 187, 110202 (2022).

    Article  Google Scholar 

  21. M. Xie, and F. Li, A modified piezoelectric ultrasonic composite oscillator technique for simultaneous measurement of elastic moduli and internal frictions at varied temperature, Rev. Sci. Instruments 91, 015110 (2020).

    Article  Google Scholar 

  22. M. Xie, and F. Li, New method enables multifunctional measurement of elastic moduli and internal frictions, J. Appl. Phys. 128, 230902 (2020).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 11890684).

Author information

Authors and Affiliations

Authors

Contributions

Bofeng Liu contributed to data curation, visualization, and writing. Jihua Tang was responsible for investigation, resources, and conceptualization. Mingyu Xie took charge of software development. Faxin Li contributed to conceptualization and writing–review & editing.

Corresponding author

Correspondence to Faxin Li  (李法新).

Additional information

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, B., Tang, J., Xie, M. et al. Monitoring of curing process of concrete based on modulus and internal friction measurement using a quantitative electromechanical impedance method. Acta Mech. Sin. 39, 423025 (2023). https://doi.org/10.1007/s10409-023-23025-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10409-023-23025-x

Navigation