Skip to main content
Log in

Numerical study on a throttling segregated fuel-oxidizer system using quasi-one-dimensional internal ballistics model

节流式燃氧分离固体发动机准一维内弹道数值研究

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

A quasi-one-dimensional numerical model is developed to provide the internal ballistics information of a throttling segregated fuel-oxidizer system (SFOS). The present throttling SFOS is capable of regulating its thrust by adjusting the opening radius of a throttle valve mounted between the head-end fuel-rich chamber and the aft-end oxygen-rich chamber. The numerical model employs a simplified reaction mechanism to describe the chemical non-equilibrium processes and considers mass addition, wall friction, and propellant surface regression in the combustion chambers. With this numerical model, the internal flow parameter distributions and the performance of the throttling SFOS are demonstrated. The steady operation results show that when the throttle valve opening radius is adjusted from 10.5 mm to 1.4 mm, the motor thrust can be increased from 121.82 N to 250.60 N, which is a 206% thrust promotion. It validates the conception of throttling SFOS. The flow parameters also suggest that the function of the throttle valve can only be manifested when the valve opening radius is quite small. The dynamic operation results reveal that the performance histories of the throttling SFOS experience slight anti-regulations at the end of the valve actuation, which deserves extra protective measures. A theoretical prediction of the thrust regulation ability of the throttling SFOS is provided. It suggests that the thrust regulation ability is limited by the fuel-rich chamber pressure and the initial mass flow rate ratio, and a compromise has to be made among multiple parameters to achieve a reasonable thrust regulation ratio. Finally, the grain arrangement is tentatively discussed. It shows that, based on the present modeling conditions, the fuel-oxygen grain arrangement is superior in its thrust regulation ability than the reversed oxygen-fuel grain arrangement.

摘要

本文建立了用于计算节流式燃氧分离固体发动机内弹道的准一维数值模型. 节流式燃氧分离固体发动机通过改变富燃燃烧室 和富氧燃烧室之间的节流阀开口半径来实现其推力的调节. 数值模型采用简化的反应机理来描述化学非平衡过程, 且考虑了燃烧室中 的质量添加、壁面摩擦和推进剂燃面退移过程. 利用该数值模型展示了节流式燃氧分离固体发动机的内部流动参数分布和工作性能. 发动机稳定工作状态结果显示, 当节流阀开度半径由10.5 mm调节至1.4 mm时, 发动机推力由121.82 N增加至250.60 N, 推力提升了 206%, 验证了节流式燃氧分离固体发动机概念的可行性. 流动参数也表明节流阀的调节作用仅在阀门开度较小时才得以充分体现. 发 动机动态工作过程结果显示, 在调节阀停止作动时, 节流式燃氧分离固体发动机性能会产生负调现象, 因而需要对发动机采取额外的 保护措施. 对节流式燃氧分离固体发动机调节能力的理论预测发现, 发动机的推力调节能力受限于富燃燃烧室压力和初始质量流量比, 需要在多个参数之间进行权衡以实现合理的推力调节比. 最后对推进剂的布置方式进行了初步探讨. 结果表明, 燃氧推进剂布置下发 动机的推力调节能力优于氧燃推进剂布置.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. B. C. Tappan, and G. A. Risha, Solid chemical rocket propulsion system, U.S. Patent Application, 13/828, 371, (2014-4-24).

  2. B. C. Tappan, N. A. Dallmann, A. M. Novak, J. P. Lichthardt, N. N. De, E. V. Baca, D. M. Oschwald, and D. N. Seitz, in High deltaV solid propulsion system for small satellites: Proceedings of the 30th Annual AIAA/USU Conference on Small Satellites, 2016.

  3. J. P. Lichthardt, Stabilization of Lanl’s Novel Segregated Solid Propellant Rocket Motor, Dissertation for Master’s Degree (New Mexico Institute of Mining and Technology, Albuquerque, 2017).

    Google Scholar 

  4. E. Cavallini, B. Favini, M. Di Giacinto, and F. Serraglia, in SRM internal ballistic numerical simulation by SPINBALL model: Proceedings of 45th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Denver, 2009.

  5. E. Cavallini, B. Favini, M. di Giacinto, and F. Serraglia, Internal ballistics simulation of a NAWC tactical SRM, J. Appl. Mech. 78, 051018 (2011).

    Article  Google Scholar 

  6. D. R. Greatrix, Scale effects on quasi-steady solid rocket internal ballistic behaviour, Energies 3, 1790 (2010).

    Article  Google Scholar 

  7. S. G. M. Stekhareh, A. R. Mostofizadeh, N. Fouladi, and A. Soleyman, One dimensional internal ballistics simulation of solid rocket motor, ISME. J. 14, 5 (2013).

    Google Scholar 

  8. D. Viganò, A. Annovazzi, and F. Maggi, Monte Carlo uncertainty quantification using quasi-1D SRM ballistic model, Int. J. Aerosp. Eng. 2016, 1 (2016).

    Article  Google Scholar 

  9. Z. Wang, P. Liu, B. Jin, and W. Ao, Nonlinear characteristics of the triggering combustion instabilities in solid rocket motors, Acta Astronaut. 176, 371 (2020).

    Article  Google Scholar 

  10. W. S. Hwang, B. K. Sung, W. Han, K. Y. Huh, B. J. Lee, H. S. Han, C. H. Sohn, and J. Y. Choi, Real-gas-flamelet-model-based numerical simulation and combustion instability analysis of a GH2/LOX rocket combustor with multiple injectors, Energies 14, 419 (2021).

    Article  Google Scholar 

  11. Y. Xi, N. Wang, J. Li, Z. Zhang, and L. Han, Experimental and numerical study on pressure oscillation in a combustor with rotary valve, Chin. J. Aeronaut. 34, 298 (2021).

    Article  Google Scholar 

  12. Y. Wang, C. H. Sohn, J. Bae, and Y. Yoon, Prediction of combustion instability by combining transfer functions in a model rocket combustor, Aerosp. Sci. Tech. 119, 107202 (2021).

    Article  Google Scholar 

  13. J. J. Gottlieb, and D. R. Greatrix, Numerical study of the effects of longitudinal acceleration on solid rocket motor internal ballistics, J. Fluids Eng. 114, 404 (1992).

    Article  Google Scholar 

  14. K. Pekkan, and A. Ucer, in One-dimensional combustion instability studies with moving boundaries in an end-burning test motor: Proceedings of 38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Indianapolis, 2002.

  15. G. A. Flandro, S. R. Fischbach, and J. Majdalani, Nonlinear rocket motor stability prediction: Limit amplitude, triggering, and mean pressure shift, Phys. Fluids 19, 094101–094101-16 (2007).

    Article  MATH  Google Scholar 

  16. D. Greatrix, in Parametric evaluation of solid rocket combustion instability behavior: Proceedings of 45th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Denver, 2009.

  17. C. Baczynski, and D. Greatrix, in Steepness of grain geometry transitions on instability symptom suppression in solid rocket motor: Proceedings of 45th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Denver, 2009.

  18. V. Kalyana Chakravarthy, A. S. Iyer, and D. Chakraborty, Quasi-one-dimensional modeling of internal ballistics and axial acoustics in solid rocket motors, J. Propulsion Power 32, 882 (2016).

    Article  Google Scholar 

  19. D. R. Greatrix, Nonsteady interior ballistics of cylindrical-grain solid rocket motors, in: WIT Transactions on Modelling and Simulation (WIT Press, Southampton, 2005).

    Google Scholar 

  20. X. Zou, N. Wang, L. Han, T. Bai, and K. Xie, Numerical investigation on regression rate and thrust regulation behaviors of a combined solid rocket motor with aluminum-based fuel, Aerosp. Sci. Tech. 119, 107102 (2021).

    Article  Google Scholar 

  21. N.S. Uddanti, and Y. Crispin, in CFD modeling of a hybrid rocket using a generalized one-dimensional model of the flame temperature: Proceedings of AIAA Propulsion and Energy 2019 Forum, Indianapolis, 2019.

  22. J. Wang, N. Wang, X. Zou, W. Dong, Y. Zhou, D. Xie, and B. Shi, Numerical study on combustion efficiency of aluminum particles in solid rocket motor, Chin. J. Aeronaut. 36, 66 (2023).

    Article  Google Scholar 

  23. S. Liu, P. He, L. Han, Y. Ding, L. Wang, J. Han, and S. Hu, Numerical study on the effect of pressure on transient microcombustion and heat release characteristics of AP/HTPB/Al composite propellant fuel, Fuel 347, 128445 (2023).

    Article  Google Scholar 

  24. S. Liu, Z. Chen, L. Wang, Y. Li, and S. Hu, Numerical study on transient regression rate and combustion characteristics of segregated AP-based oxidizer/TAGN-based fuel, Fuel 337, 126893 (2023).

    Article  Google Scholar 

  25. V. A. Poryazov, K. M. Moiseeva, A. Y. Krainov, and V. A. Arkhipov, Numerical simulation of combustion of a composite solid propellant containing boron powder, Combust. Explos. Shock Waves 58, 197 (2022).

    Article  Google Scholar 

  26. R. Bertacin, F. Ponti, and A. Annovazzi, in A new three dimensional ballistic model for solid rocket motor non-homogeneous combustion: Proceedings of 48th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Atlanta, 2012.

  27. G. Mejia, R. Jachura, S. R. Gomes, L. Rocco, J. A. Rocco, and K. Iha, Solid rocket motor burn simulation considering complex 3D propellant grain geometries: Proceedings of 52nd AIAA/SAE/ASEE Joint Propulsion Conference, Salt Lake City, 2016.

  28. E. Tangermann, N. Wegh, M. Klein, S. Weiland, and T. Link, Simulation of ariane 5 solid rocket booster deformation by internal ballistics, J. Propulsion Power 37, 139 (2021).

    Article  Google Scholar 

  29. A. Attili, B. Favini, M. Di Giacinto, and F. Serraglia, in Numerical simulation of multiphase flows in solid rocket motors: Proceedings of 45th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Denver, 2009.

  30. B. Favini, S. Zaghi, F. Serraglia, and M. Di Giacinto, A fully three dimensional analysis of pre-ignition transient in solid rocket motors: Proceedings of 43rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Cincinnati, 2007.

  31. X. Qian, H. Lu, C. Zou, H. Zhang, S. Shao, and H. Yao, Numerical investigation of the effects of turbulence on the ignition process in a turbulent MILD flame, Acta Mech. Sin. 37, 1299 (2021).

    Article  MathSciNet  Google Scholar 

  32. J. Montesano, K. Behdinan, D. R. Greatrix, and Z. Fawaz, Internal chamber modeling of a solid rocket motor: Effects of coupled structural and acoustic oscillations on combustion, J. Sound Vib. 311, 20 (2008).

    Article  Google Scholar 

  33. J. Montesano, D. R. Greatrix, K. Behdinan, and Z. Fawaz, Prediction of unsteady non-linear combustion instability in solid rocket motors, J. Aerosp. Eng. 223, 901 (2009).

    Google Scholar 

  34. W. Cai, P. Thakre, and V. Yang, A model of AP/HTPB composite propellant combustion in rocket-motor environments, Combust. Sci. Tech. 180, 2143 (2008).

    Article  Google Scholar 

  35. A. Ern, and V. Giovangigli, Multicomponent Transport Algorithms (Springer Science & Business Media, New York, 1994).

    Book  MATH  Google Scholar 

  36. M. S. Liou, A sequel to AUSM, Part II: AUSM+-up for all speeds, J. Comput. Phys. 214, 137 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  37. B. van Leer, Towards the ultimate conservative difference scheme. V. A second-order sequel to Godunov’s method, J. Comput. Phys. 32, 101 (1979).

    Article  MATH  Google Scholar 

  38. R. Abgrall, and S. Karni, Computations of compressible multifluids, J. Comput. Phys. 169, 594 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  39. R. W. MacCormack, and B. Baldwin, A numerical method for solving the Navier-Stokes equations with application to shock-boundary layer interactions, 13th Aerospace Sciences Meeting, 1975.

  40. S. Gottlieb, and C. W. Shu, Total variation diminishing Runge-Kutta schemes, Math. Comp. 67, 73 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  41. J. G. Verwer, B. P. Sommeijer, and W. Hundsdorfer, RKC time-stepping for advection-diffusion-reaction problems, J. Comput. Phys. 201, 61 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  42. T. F. O’Brien, R. P. Starkey, and M. J. Lewis, Quasi-one-dimensional high-speed engine model with finite-rate chemistry, J. Propulsion Power 17, 1366 (2001).

    Article  Google Scholar 

  43. T. Smith, J. Schetz, and T. Bui, Development and ground testing of direct measuring skin friction gages for high enthalpy supersonic flight tests: Proceedings of 22nd AIAA Aerodynamic Measurement Technology and Ground Testing Conference, St. Louis, 2001.

  44. R. C. Aiken, Stiff Computation (Oxford University Press, New York, 1985).

    MATH  Google Scholar 

  45. F. S. Billig, and S. E. Grenleski, in Heat transfer in supersonic combustion processes: Proceedings of International Heat Transfer Conference Digital Library, Paris-Versailles, 1970.

Download references

Acknowledgements This work was supported by the National Basic Research Program of China (Grant No. 2019-083). The authors owe a great debt to the late Prof. Wei Zhang of the College of Aerospace Science and Engineering, National University of Defense Technology.

Author information

Authors and Affiliations

Authors

Contributions

Author contributions Limin Wang: Conceptualization; Writing–review & editing. Fuqi Wang: Writing–original draft; Investigation. Zhibang Wang: Software; Investigation. Yingnan Wang: Software; Investigation. Ge Wang: Funding acquisition; Project administration; Resources. Ben Guan: Writing–review & editing. Xing Zhou: Investigation.

Corresponding author

Correspondence to Ge Wang  (王革).

Ethics declarations

Conflict of interest On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Wang, F., Wang, Z. et al. Numerical study on a throttling segregated fuel-oxidizer system using quasi-one-dimensional internal ballistics model. Acta Mech. Sin. 40, 323021 (2024). https://doi.org/10.1007/s10409-023-23021-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10409-023-23021-x

Navigation