Skip to main content
Log in

Aerodynamic analysis of bionic cylindrical rib-supporting wings in plunging and flapping motions

圆柱形肋支撑的薄翼在沉浮和挥拍运动中的空气动力响应

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

A simplified rectangular thin-wing model with a spanwise rib is proposed to investigate the influence of the front limb and fingers embedded in the bat membrane wing on aerodynamics. The leading edge rib-enhanced wing (LRW) and the middle rib-enhanced wing (MRW) have been studied numerically in two-dimensional plunging and three-dimensional flapping motions. It is found that the aerodynamic features of the plunging and flapping wings are similar, i.e., the spanwise cylindrical rib only affects the chordwise forces on the model wings and almost does not change the normal forces. In particular, the leading edge rib-supporting structure increases the thrust due to the large region of low pressure on the rib’s head when the wing moves in moderate or large amplitudes. When the rib is placed far away from the leading edge, the influence decreases rapidly. Furthermore, the effects of spanwise rib-enhanced wing are independent of Reynolds number when it is greater than 1000. The present study can assist in the design of rib-enhanced wings for bionic flapping-wing air vehicles.

摘要

本文提出了一种展向支撑肋的简化薄翼模型, 用以研究蝙蝠膜翼中前肢和手指对空气动力学的影响. 通过对肋增强的三维薄 翼做沉浮运动和挥拍运动的数值研究, 发现沉浮运动和挥拍运动产生的气动特性相似, 展向安置的圆柱形肋只影响模型翼的弦向力, 几乎不改变法向力. 当前缘肋支撑的薄翼做中等或大幅度运动时, 由于肋迎风面的大面积低压区域导致了推力的增加. 当肋远离前缘 放置时, 影响迅速减小. 在研究不同的来流条件后, 发现当雷诺数大于1000时, 展向肋对薄翼推力系数的增强与雷诺数无关. 本研究将 有助于仿生扑翼飞行器的薄翼的加强肋设计.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. M. Wolf, L. C. Johansson, R. von Busse, Y. Winter, and A. Hedenströ, Kinematics of flight and the relationship to the vortex wake of a Pallas’ long tongued bat (Glossophaga soricina), J. Exp. Biol. 213, 2142 (2010).

    Article  Google Scholar 

  2. R. Von Busse, A. Hedenström, Y. Winter, and L. C. Johansson, Kinematics and wing shape across flight speed in the bat, Leptonycteris yerbabuenae, Biol. Open 1, 1226 (2012).

    Article  Google Scholar 

  3. G. F. McCracken, K. Safi, T. H. Kunz, D. K. N. Dechmann, S. M. Swartz, and M. Wikelski, Airplane tracking documents the fastest flight speeds recorded for bats, R. Soc. Open Sci. 3, 160398 (2016).

    Article  Google Scholar 

  4. A. Hedenström, L. C. Johansson, and G. R. Spedding, Bird or bat: Comparing airframe design and flight performance, J. Exper. Bio. 4, 015001 (2009).

    Google Scholar 

  5. L. C. Johansson, M. Wolf, and A. Hedenström, A quantitative comparison of bird and bat wakes, J. R. Soc. Interface. 7, 61 (2010).

    Article  Google Scholar 

  6. D. Bie, D. Li, J. Xiang, H. Li, Z. Kan, and Y. Sun, Design, aerodynamic analysis and test flight of a bat-inspired tailless flapping wing unmanned aerial vehicle, Aerosp. Sci. Tech. 112, 106557 (2021).

    Article  Google Scholar 

  7. A. Ramezani, S.-J. Chung, and S. Hutchinson, Abiomimetic robotic platform to study flight specializations of bats, Sci. Robot. 2, 8 (2017).

    Article  Google Scholar 

  8. J. A. Cheney, J. J. Allen, and S. M. Swartz, Diversity in the organization of elastin bundles and intramembranous muscles in bat wings, J. Anat. 230, 510(2017).

    Article  Google Scholar 

  9. R. D. Bullen, and N. L. McKenzie, Bat wing airfoil and planform structures relating to aerodynamic cleanliness, Aust. J. Zool. 55, 237 (2007).

    Article  Google Scholar 

  10. D. K. Riskin, D. J. Willis, J. Iriarte-Díaz, T. L. Hedrick, M. Kostandov, J. Chen, D. H. Laidlaw, K. S. Breuer, and S. M. Swartz, Quantifying the complexity of bat wing kinematics, J. Theor. Biol. 254, 604 (2008).

    Article  Google Scholar 

  11. J. W. Bahlman, R. M. Price-Waldman, H. W. Lippe, K. S. Breuer, and S. M. Swartz, Simplifying a wing: Diversity and functional consequences of digital joint reduction in bat wings, J. Anat. 229, 114 (2016).

    Article  Google Scholar 

  12. S. M. Swartz, and K. M. Middleton, Biomechanics of the bat limb skeleton: Scaling, material properties and mechanics, Cells Tissues Organs 187, 59 (2007).

    Article  Google Scholar 

  13. U. M. Norberg, Vertebrate Flight, Vol. 27 (Springer, Berlin, Heidelberg, 1990).

    Book  Google Scholar 

  14. U. M. Norberg, Structure, form, and function of flight in engineering and the living world, J. Morphol. 252, 52 (2002).

    Article  Google Scholar 

  15. F. T. Muijres, L. C. Johansson, R. Barfield, M. Wolf, G. R. Spedding, and A. Hedenström, Leading-edge vortex improves lift in slow-flying bats, Science 319, 1250 (2008).

    Article  Google Scholar 

  16. M. H. Dickinson, F. O. Lehmann, and S. P. Sane, Wing rotation and the aerodynamic basis of insect flight, Science 284, 1954 (1999).

    Article  Google Scholar 

  17. M. Sun, and J. Tang, Unsteady aerodynamic force generation by a model fruit fly wing in flapping motion, J. Exp. Biol. 205, 55 (2002).

    Article  Google Scholar 

  18. A. Andersen, T. Bohr, T. Schnipper, and J. H. Walther, Wake structure and thrust generation of a flapping foil in two-dimensional flow, J. Fluid Mech. 812, 406 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  19. S. Wang, X. Zhang, G. He, and T. Liu, Lift enhancement by bats’ dynamically changing wingspan, J. R. Soc. Interface. 12, 20150821 (2015).

    Article  Google Scholar 

  20. Z. Guan, and Y. Yu, Aerodynamic mechanism of forces generated by twisting model-wing in bat flapping flight, Appl. Math. Mech.-Engl. Ed. 35, 1607 (2014).

    Article  Google Scholar 

  21. Z. Guan, and Y. Yu, Aerodynamics and mechanisms of elementary morphing models for flapping wing in forward flight of bat, Appl. Math. Mech.-Engl. Ed. 36, 669 (2015).

    Article  MathSciNet  Google Scholar 

  22. Y. Yu, and Z. Guan, Learning from bat: Aerodynamics of actively morphing wing, Theor. Appl. Mech. Lett. 5, 13 (2015).

    Article  Google Scholar 

  23. D. Bie, D. Li, H. Li, Z. Kan, and Z. Tu, Analytical study on lift performance of a bat-inspired foldable flapping wing: Effect of wing arrangement, Aerospace 9, 653 (2022).

    Article  Google Scholar 

  24. X. Lang, B. Song, W. Yang, and X. Yang, Effect of spanwise folding on the aerodynamic performance of three dimensional flapping flat wing, Phys. Fluids 34, 021906 (2022).

    Article  Google Scholar 

  25. S. Wang, X. Zhang, G. He, and T. Liu, Lift enhancement by dynamically changing wingspan in forward flapping flight, Phys. Fluids 26, 061903 (2014), arXiv: 1309.2726.

    Article  Google Scholar 

  26. R. E. Hanson, H. P. Buckley, and P. Lavoie, Aerodynamic optimization of the flatplate leading edge for experimental studies of laminar and transitional boundary layers, AIAA J. 53, 863 (2012).

    Google Scholar 

  27. R. R. Leknys, M. Arjomandi, R. M. Kelso, and C. H. Birzer, Leading-edge vortex development on a pitching flat plate with multiple leading edge geometries, Exp. Thermal Fluid Sci. 96, 406 (2018).

    Article  Google Scholar 

  28. L. Zhao, and S. Yang, Influence of thickness variation on the flapping performance of symmetric naca airfoils in plunging motion, Math. Problems Eng. 2010, 1 (2010).

    Google Scholar 

  29. M. Yu, Z. J. Wang, and H. Hu, Airfoil thickness effects on the thrust generation of plunging airfoils, J. Aircraft 49, 1434 (2012).

    Article  Google Scholar 

  30. R. Sankarasubramanian, A. Sridhar, M. S. Prashanth, A. Mohammad, R. K. Velamati, and L. Vaitla, Influence of thickness on performance characteristics of non-sinusoidal plunging motion of symmetric airfoil, Aerosp. Sci. Tech. 81, 333 (2018).

    Article  Google Scholar 

  31. T. Weis-Fogh, Quick estimates of flight fitness in hovering animals, including novel mechanisms for lift production, J. Exp. Biol. 59, 169 (1973).

    Article  Google Scholar 

  32. Z. J. Wang, J. M. Birch, and M. H. Dickinson, Unsteady forces and flows in low Reynolds number hovering flight: Two-dimensional computations vs robotic wing experiments, J. Exp. Biol. 207, 449 (2004).

    Article  Google Scholar 

  33. J. M. Birch, and M. H. Dickinson, The influence of wing-wake interactions on the production of aerodynamic forces in flapping flight, J. Exp. Biol. 206, 2257 (2003).

    Article  Google Scholar 

  34. Y.-L. Yu, B. G. Tong, and H. Y. Ma, An analytic approach to theoretical modeling of highly unsteady viscous flow excited by wing flapping in small insects, Acta Mech. Sin. 19, 508 (2003).

    Article  Google Scholar 

  35. K. Viswanath, K. Nagendra, J. Cotter, M. Frauenthal, and D. K. Tafti, Straight-line climbing flight aerodynamics of a fruit bat, Phys. Fluids 26, 021901 (2014).

    Article  Google Scholar 

  36. M. Visbal, T. O. Yilmaz, and D. Rockwell, Three-dimensional vortex formation on a heaving low-aspect-ratio wing: Computations and experiments, J. Fluids Struct. 38, 58 (2013).

    Article  Google Scholar 

  37. Y. Yu, B. Tong, and H. Ma, An analytic approach to theoretical modeling of highly unsteady viscous flow excited by wing flapping in small insects, Acta Mech. Sin. 19, 508 (2003).

    Article  Google Scholar 

  38. Y. Yu, and B. Tong, A flow control mechanism in wing flapping with stroke asymmetry during insect forward flight, Acta Mech. Sin. 21, 218 (2005).

    Article  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 12172355 and 11672291), and the Fundamental Research Funds for the Central Universities (Grant No. E1E42201).

Author information

Authors and Affiliations

Authors

Contributions

Bo-Wen Zhu: Formal analysis; Investigation; Validation (equal); Visualization; Writing–original draft; Writing–review & editing (equal). Yong-Liang Yu: Project administration; Resources; Supervision; Validation (equal); Writing–review & editing (equal).

Corresponding author

Correspondence to Yong-Liang Yu  (余永亮).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, BW., Yu, YL. Aerodynamic analysis of bionic cylindrical rib-supporting wings in plunging and flapping motions. Acta Mech. Sin. 39, 322495 (2023). https://doi.org/10.1007/s10409-023-22495-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10409-023-22495-x

Keywords

Navigation