Skip to main content
Log in

Asymmetric bias-tunable surface adhesion of semiconductor nanofilms

半导体薄膜表面粘附的非对称性偏压调控

  • Rapid Communication
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

Electrically tunable surface adhesion is of vital importance for ubiquitous microelectromechanical systems, and is normally symmetric to the applied bias voltage. Here we report the asymmetric bias-tunable surface adhesion of semiconductor nanofilms by taking molybdenum disulfide (MoS2) as a demo with graphene, hexagonal boron nitride, and bulk n-type doped silicon serving as the normal control group. The bias-tunable adhesion force between the Au-coated tip and the Au back electrode supported MoS2 nanofilms was deciphered by combining conductive atomic force microscopic examinations in vacuum and theoretical simulations. The asymmetric bias-tunability is found to be significantly stronger than that of the control group, attributing to the built-in electric field at the Schottky junction between the nanofilm and back electrode.

摘要

电调控表面粘附对微机电系统是至关重要的, 同时相对于外加电压极性常具有对称性. 本文以二硫化钼为研究对象, 以石墨 烯、氮化硼和n型硅为参照组展示半导体薄膜表面的非对称粘附行为. 研究主要通过导电原子力显微镜和理论模拟来揭示金探针与金 基底上二硫化钼之间的偏压调控粘附力的行为. 结果反映二硫化钼表面偏压对粘附的调控能力远大于参照组材料, 这种非对称行为主 要来源于半导体薄膜与背电极之间形成的肖特基结中的内建电场.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. M. Gad-el-Hak, The MEMS Handbook (CRC Press, Boca Raton, 2002).

    MATH  Google Scholar 

  2. S. Rajauria, O. Ruiz, S. V. Canchi, E. Schreck, and Q. Dai, Electrostatically tunable adhesion in a high speed sliding interface, Phys. Rev. Lett. 120, 026101 (2018).

    Article  Google Scholar 

  3. M. Wolloch, G. Levita, P. Restuccia, and M. C. Righi, Interfacial charge density and its connection to adhesion and frictional forces, Phys. Rev. Lett. 121, 026804 (2018).

    Article  Google Scholar 

  4. C. A. de Coulomb, Premier Mémoire sur l’Électricité et le Magnétisme, Mem. Acad. Roy. Sci. 569 (1785).

  5. E. Bonaccurso, F. Schönfeld, and H. J. Butt, Electrostatic forces acting on tip and cantilever in atomic force microscopy, Phys. Rev. B 74, 085413 (2006).

    Article  Google Scholar 

  6. Y. Jiang, L. Yue, B. Yan, X. Liu, X. Yang, G. Tai, and J. Song, Electric control of friction on silicon studied by atomic force microscope, Nano 10, 1550038 (2014).

    Article  Google Scholar 

  7. Law, B. M, and Rieutord F, Electrostatic forces in atomic force microscopy, Phys. Rev B66, 035402 (2002).

    Article  Google Scholar 

  8. Y. Zhang, D. Zhang, Y. Wang, Q. Liu, Q. Li, and M. Dong, Atomic-scale friction of black and violet phosphorus crystals: Implications for phosphorus-based devices and lubricants, ACS Appl. Nano Mater. 4, 9932 (2021).

    Article  Google Scholar 

  9. L. H. Li, T. Tian, Q. Cai, C. J. Shih, and E. J. G. Santos, Asymmetric electric field screening in van der Waals heterostructures, Nat. Commun. 9, 1271 (2018).

    Article  Google Scholar 

  10. W. Schottky, Zur Halbleitertheorie der Sperrschicht-und Spitzengle-ichrichter, Z. Physik 113, 367 (1939).

    Article  MATH  Google Scholar 

  11. N. F. Mott, The theory of crystal rectifiers, Proc. R. Soc. Lond. A 171, 27 (1939).

    Article  MATH  Google Scholar 

  12. J. Kang, W. Liu, D. Sarkar, D. Jena, and K. Banerjee, Computational study of metal contacts to monolayer transition-metal dichalcogenide semiconductors, Phys. Rev. X 4, 031005 (2014).

    Google Scholar 

  13. H. Hasegawa, and T. Sawada, On the electrical properties of compound semiconductor interfaces in metal/insulator/semiconductor structures and the possible origin of interface states, Thin Solid Films 103, 119 (1983).

    Article  Google Scholar 

  14. Q. Wang, Y. Shao, P. Gong, and X. Shi, Metal-2D multilayered semiconductor junctions: Layer-number dependent Fermi-level pinning, J. Mater. Chem. C 8, 3113 (2020).

    Article  Google Scholar 

  15. R. Zan, Q. M. Ramasse, R. Jalil, T. Georgiou, U. Bangert, and K. S. Novoselov, Control of radiation damage in MoS2 by graphene encapsulation, ACS Nano 7, 10167 (2013).

    Article  Google Scholar 

  16. Y. Liu, J. Guo, E. Zhu, L. Liao, S. J. Lee, M. Ding, I. Shakir, V. Gambin, Y. Huang, and X. Duan, Approaching the Schottky-Mott limit in van der Waals metal-semiconductor junctions, Nature 557, 696 (2018).

    Article  Google Scholar 

  17. P. C. Shen, C. Su, Y. Lin, A. S. Chou, C. C. Cheng, J. H. Park, M. H. Chiu, A. Y. Lu, H. L. Tang, M. M. Tavakoli, G. Pitner, X. Ji, Z. Cai, N. Mao, J. Wang, V. Tung, J. Li, J. Bokor, A. Zettl, C. I. Wu, T. Palacios, L. J. Li, and J. Kong, Ultralow contact resistance between semimetal and monolayer semiconductors, Nature 593, 211 (2021).

    Article  Google Scholar 

  18. L. Kong, X. Zhang, Q. Tao, M. Zhang, W. Dang, Z. Li, L. Feng, L. Liao, X. Duan, and Y. Liu, Doping-free complementary WSe2 circuit via van der Waals metal integration, Nat. Commun. 11, 1866 (2020).

    Article  Google Scholar 

  19. L. Liu, L. Kong, Q. Li, C. He, L. Ren, Q. Tao, X. Yang, J. Lin, B. Zhao, Z. Li, Y. Chen, W. Li, W. Song, Z. Lu, G. Li, S. Li, X. Duan, A. Pan, L. Liao, and Y. Liu, Transferred van der Waals metal electrodes for sub-1-nm MoS2 vertical transistors, Nat. Electron. 4, 342 (2021).

    Article  Google Scholar 

  20. N. Kaushik, A. Nipane, F. Basheer, S. Dubey, S. Grover, M. M. Deshmukh, and S. Lodha, Schottky barrier heights for Au and Pd contacts to MoS2, Appl. Phys. Lett. 105, 113505 (2014).

    Article  Google Scholar 

  21. H. B. Michaelson, The work function of the elements and its periodicity, J. Appl. Phys. 48, 4729 (1977).

    Article  Google Scholar 

  22. G. Giovannetti, P. A. Khomyakov, G. Brocks, V. M. Karpan, J. van den Brink, and P. J. Kelly, Doping graphene with metal contacts, Phys. Rev. Lett. 101, 026803 (2008).

    Article  Google Scholar 

  23. L. Romaner, D. Nabok, P. Puschnig, E. Zojer, and C. Ambrosch-Draxl, Theoretical study of PTCDA adsorbed on the coinage metal surfaces, Ag(111), Au(111) and Cu(111), New J. Phys. 11, 053010 (2009).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National and Jiangsu Province Natural Science Foundation (Grant Nos. T2293691, T2293692, and BK20212008) of China, National Key Research and Development Program of China (Grant No. 2019YFA0705400), China Postdoctoral Science Foundation (Grant No. 2021M701703), Jiangsu Funding Program for Excellent postdoctoral talent (Grant No. 2022ZB211), the Research Fund of State Key Laboratory of Mechanics and Control of Mechanical Structures (Grant No. MCMS-I-0422K01), the Fundamental Research Funds for the Central Universities (Grant No. NJ2022002), and the Fund of Prospective Layout of Scientific Research for NUAA (Nanjing University of Aeronautics and Astronautics).

Author information

Authors and Affiliations

Authors

Contributions

Wanlin Guo and Baowen Li conceived the idea of the project. Baowen Li performed the experiments and finite-element simulation. Xiaoyu Xuan, Zhuhua Zhang, Yan Yin, and Min Yi performed the DFT calculations. Wanlin Guo supervised the research. Wanlin Guo, Baowen Li, and Jianxin Zhou analyzed the results. All authors contributed to the discussion and writing of the manuscript.

Corresponding author

Correspondence to Wanlin Guo  (郭万林).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, B., Xuan, X., Yin, Y. et al. Asymmetric bias-tunable surface adhesion of semiconductor nanofilms. Acta Mech. Sin. 39, 122484 (2023). https://doi.org/10.1007/s10409-023-22484-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10409-023-22484-x

Navigation