Skip to main content
Log in

Creep behavior of a film cooling hole at different inclination angles in complex temperature fields

复杂温度场中不同倾角膜孔蠕变行为研究

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

We studied the creep behavior of thin-walled plates with a single film cooling hole at different inclination angles in complex temperature fields. Numerical simulations were carried out by combining the conjugate heat transfer and crystal plastic finite element methods. Simulation results showed that 30° and 45° holes had superior cooling performance, especially 45° holes had better lifetime characteristics. We found that decreasing the inclination angle and increasing the blowing ratio both increase the temperature difference around the hole along the wall thickness direction, which in turn generates additional stress concentrations on the acute side of the cold surface, but did not have a significant effect on the stress distribution. In addition, during film cooling, high temperatures lead to creep damage on the acute side of the hot surface, and large temperature differences together with low temperatures determine damage on the acute side of the cold surface.

摘要

本文研究了不同倾斜角度下气膜冷却孔薄壁板在复杂温度场中的蠕变行为. 采用共轭传热和晶体塑性有限元法相结合进行了 数值模拟. 结果表明, 30°孔和45°孔具有较好的冷却性能, 特别是45°孔具有较好的寿命特性. 我们发现, 减小倾角和增大吹气比都会增 大孔周围沿壁厚方向的温度差, 从而在冷表面的急性侧产生额外的应力集中, 但对应力分布没有显著影响. 此外, 在气膜冷却过程中, 高温导致热表面急性侧的蠕变损伤, 而大温差和低温共同决定了冷表面急性侧的损伤.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. D. G. Bogard, and K. A. Thole, Gas turbine film cooling, J. Propulsion Power 22, 249 (2006).

    Article  Google Scholar 

  2. G. C. Oates, Aerothermodynamics of Aircraft Engine Components (American Institute of Aeronautics and Astronautics, New York, 1985).

    Book  Google Scholar 

  3. N. Al-Zurfi, A. Turan, A. Nasser, and A. Alhusseny, A numerical study of anti-vortex film-cooling holes designs in a 1–1/2 turbine stage using LES, Propulsion Power Res. 8, 275 (2019).

    Article  Google Scholar 

  4. W. He, Q. Deng, W. Zhou, T. Gao, and Z. Feng, Film cooling and aerodynamic performances of a turbine nozzle guide vane with trenched cooling holes, Appl. Thermal Eng. 150, 150 (2019).

    Article  Google Scholar 

  5. J. H. Kim, and K. Y. Kim, Performance evaluation of a converging-diverging film-cooling hole, Int. J. Thermal Sci. 142, 295 (2019).

    Article  Google Scholar 

  6. Z. Zhou, H. Li, H. Wang, G. Xie, and R. You, Film cooling of cylindrical holes on turbine blade suction side near leading edge, Int. J. Heat Mass Transfer 141, 669 (2019).

    Article  Google Scholar 

  7. Z. Wen, S. Huang, H. Gao, and Z. Yue, Experimental investigation on low cycle fatigue properties of GH3536 alloy with film cooling holes in different drilling processes, Eng. Fail. Anal. 82, 190 (2017).

    Article  Google Scholar 

  8. J. Jiang, X. Ma, and B. Wang, Stress analysis of the thermal barrier coating system near a cooling hole considering the free-edge effect, Ceram. Int. 46, 331 (2020).

    Article  Google Scholar 

  9. Z. Wen, D. Zhang, S. Li, Z. Yue, and J. Gao, Anisotropic creep damage and fracture mechanism of nickel-base single crystal super-alloy under multiaxial stress, J. Alloys Compd. 692, 301 (2017).

    Article  Google Scholar 

  10. E. R. G. Eckert, V. L. Eriksen, R. J. Goldstein, and J. W. Ramsey, Film cooling following injection through inclined circular tubes, Israel J. Technol. 8, 145 (1970).

    Google Scholar 

  11. R. J. Goldstein, E. R. G. Eckert, and J. W. Ramsey, Film cooling with injection through holes: Adiabatic wall temperatures downstream of a circular hole, J. Eng. Power 90, 384 (1968).

    Article  Google Scholar 

  12. J. H. Kim, and K. Y. Kim, Film-cooling performance of convergedinlet hole shapes, Int. J. Thermal Sci. 124, 196 (2018).

    Article  Google Scholar 

  13. S. Lee, W. Hwang, and K. Yee, Robust design optimization of a turbine blade film cooling hole affected by roughness and blockage, Int. J. Thermal Sci. 133, 216 (2018).

    Article  Google Scholar 

  14. J. H. Leylek, and R. D. Zerkle, Discrete-jet film cooling: A comparison of computational results with experiments, J. Turbomach. 116, 145 (1994).

    Article  Google Scholar 

  15. W. Yang, X. Liu, G. Li, and J. Zhang, Experimental investigation on heat transfer characteristics of film cooling using parallel-inlet holes, Int. J. Thermal Sci. 60, 32 (2012).

    Article  Google Scholar 

  16. L. Wang, X. Li, J. Ren, and H. Jiang, The interaction between upstream and downstream film cooling rows in flow field and heat transfer, Int. J. Thermal Sci. 149, 106176 (2020).

    Article  Google Scholar 

  17. M. Zhao, Y. Bian, J. Xu, and T. Ye, Large eddy simulation of film cooling with different upstream obstacles, Int. J. Thermal Sci. 161, 106722 (2021).

    Article  Google Scholar 

  18. J. D. Heidmann, A. J. Kassab, E. A. Divo, F. Rodriguez, and E. Steinthorsson, Conjugate Heat Transfer Effects on a Realistic Film-Cooled Turbine Vane, in: Volume 5: Turbo Expo 2003, Parts A and B (ASMEDC, Atlanta, 2003), pp. 361–371.

    Chapter  Google Scholar 

  19. M. Silieti, A. J. Kassab, and E. Divo, Film cooling effectiveness: Comparison of adiabatic and conjugate heat transfer CFD models, Int. J. Thermal Sci. 48, 2237 (2009).

    Article  Google Scholar 

  20. W. Ai, and T. H. Fletcher, Computational analysis of conjugate heat transfer and particulate deposition on a high pressure turbine vane, J. Turbomach. 134, 041020 (2012).

    Article  Google Scholar 

  21. G. Chen, Y. Liu, Y. Rao, J. He, and Y. Qu, Numerical investigation on conjugate heat transfer of impingement/effusion double-wall cooling with different crossflow schemes, Appl. Thermal Eng. 155, 515 (2019).

    Article  Google Scholar 

  22. C. Liu, G. Xie, R. Wang, and L. Ye, Study on analogy principle of overall cooling effectiveness for composite cooling structures with impingement and effusion, Int. J. Heat Mass Transfer 127, 639 (2018).

    Article  Google Scholar 

  23. Y. Liu, Y. Rao, L. Yang, Y. Xu, and A. Terzis, Flow and heat transfer characteristics of double-wall cooling with multi-row short film cooling hole arrangements, Int. J. Thermal Sci. 165, 106878 (2021).

    Article  Google Scholar 

  24. Z. Tu, J. Mao, and X. Han, Numerical study of film cooling over a flat plate with anisotropic thermal conductivity, Appl. Thermal Eng. 111, 968 (2017).

    Article  Google Scholar 

  25. Z. Tu, J. Mao, H. Jiang, X. Han, and Z. He, Numerical method for the thermal analysis of a ceramic matrix composite turbine vane considering the spatial variation of the anisotropic thermal conductivity, Appl. Thermal Eng. 127, 436 (2017).

    Article  Google Scholar 

  26. X. D. Zhang, J. J. Liu, and B. T. An, The influences of element layout and coolant ejection angle on overall cooling effectiveness of laminated cooling configuration, Int. J. Heat Mass Transfer 101, 988 (2016).

    Article  Google Scholar 

  27. W. Zhou, Q. Deng, W. He, J. He, and Z. Feng, Conjugate heat transfer analysis for composite cooling structure using a decoupled method, Int. J. Heat Mass Transfer 149, 119200 (2020).

    Article  Google Scholar 

  28. Z. Cai, H. Hong, D. Peng, X. Zhao, W. Wang, Y. Liu, and Z. Cao, A numerical study of the influence of interface morphology on the stress behavior in thermal barrier coatings near an inclined film-cooling hole, Ceram. Int. 46, 18142 (2020).

    Article  Google Scholar 

  29. J. Jiang, L. Jiang, Z. Cai, W. Wang, X. Zhao, Y. Liu, and Z. Cao, Numerical stress analysis of the TBC-film cooling system under operating conditions considering the effects of thermal gradient and TGO growth, Surf. Coatings Tech. 357, 433 (2019).

    Article  Google Scholar 

  30. W. Z. Tang, L. Yang, W. Zhu, Y. C. Zhou, J. W. Guo, and C. Lu, Numerical simulation of temperature distribution and thermal-stress field in a turbine blade with multilayer-structure tbcs by a fluid-solid coupling method, J. Mater. Sci. Tech. 32, 452 (2016).

    Article  Google Scholar 

  31. J. B. le Graverend, F. Pettinari-Sturmel, J. Cormier, M. Hantcherli, P. Villechaise, and J. Douin, Mechanical twinning in Ni-based single crystal superalloys during multiaxial creep at 1050 °C, Mater. Sci. Eng.-A 722, 76 (2018).

    Article  Google Scholar 

  32. D. S. Liu, D. X. Zhang, J. W. Liang, Z. X. Wen, and Z. F. Yue, Prediction of creep rupture life of a V-notched bar in DD6 Ni-based single crystal superalloy, Mater. Sci. Eng.-A 615, 14 (2014).

    Article  Google Scholar 

  33. Y. Luo, W. Jiang, Y. Zhang, F. Zhou, and S. T. Tu, A new damage evolution model to estimate the creep fracture behavior of brazed joint under multiaxial stress, Int. J. Mech. Sci. 149, 178 (2018).

    Article  Google Scholar 

  34. Z. Li, H. Gao, Z. Wen, Y. Yang, Y. Zhang, X. Ai, and Z. Yue, Microcrack initiation behavior around film cooling holes in a Ni-based single crystal: In situ observation and crystal plastic analysis, Mater. Sci. Eng.-A 771, 138609 (2020).

    Article  Google Scholar 

  35. Y. Shang, H. Zhang, H. Hou, Y. Ru, Y. Pei, S. Li, S. Gong, and H. Xu, High temperature tensile behavior of a thin-walled Ni based single-crystal superalloy with cooling hole: In-situ experiment and finite element calculation, J. Alloys Compd. 782, 619 (2019).

    Article  Google Scholar 

  36. Z. J. Zhou, L. Wang, J. L. Wen, L. H. Lou, and J. Zhang, Effect of skew angle of holes on the tensile behavior of a Ni-base single crystal superalloy, J. Alloys Compd. 628, 158 (2015).

    Article  Google Scholar 

  37. R. Wang, B. Zhang, D. Hu, K. Jiang, X. Hao, J. Mao, and F. Jing, Inphase thermomechanical fatigue lifetime prediction of nickel-based single crystal superalloys from smooth specimens to notched specimens based on coupling damage on critical plane, Int. J. Fatigue 126, 327 (2019).

    Article  Google Scholar 

  38. D. Zhang, J. He, and J. Liang, Anisotropic creep fracture mechanism and microstructural evolution in nickel-based single crystal specimen with a center film hole, Theor. Appl. Fract. Mech. 108, 102680 (2020).

    Article  Google Scholar 

  39. J. Wang, J. Liang, Z. Wen, Y. Yang, and Z. Yue, The inter-hole interference on creep deformation behavior of nickel-based single crystal specimen with film-cooling holes, Int. J. Mech. Sci. 163, 105090 (2019).

    Article  Google Scholar 

  40. D. Zhang, J. He, and J. Liang, Creep rupture mechanism and microstructure evolution around film-cooling holes in nickel-based single crystal superalloy specimen, Eng. Fract. Mech. 235, 107187 (2020).

    Article  Google Scholar 

  41. D. Zhang, J. He, J. Liang, and Z. He, Surface slip deformation characteristics of nickel-base single crystal thin plates with film cooling holes, IEEE Access 8, 75145 (2020).

    Article  Google Scholar 

  42. C. Skamniotis, M. Courtis, and A. C. F. Cocks, Multiscale analysis of thermomechanical stresses in double wall transpiration cooling systems for gas turbine blades, Int. J. Mech. Sci. 207, 106657 (2021).

    Article  Google Scholar 

  43. C. Skamniotis, and A. C. F. Cocks, Thermal and centrifugal stresses in curved double wall transpiration cooled components with temperature dependent thermoelastic properties, Int. J. Solids Struct. 234–235, 111273 (2022).

    Article  Google Scholar 

  44. C. Skamniotis, and A. C. F. Cocks, 2D and 3D thermoelastic phenomena in double wall transpiration cooling systems for gas turbine blades and hypersonic flight, Aerosp. Sci. Tech. 113, 106610 (2021).

    Article  Google Scholar 

  45. C. Skamniotis, and A. C. F. Cocks, Designing against severe stresses at compound cooling holes of double wall transpiration cooled engine components, Aerosp. Sci. Tech. 116, 106856 (2021).

    Article  Google Scholar 

  46. C. Skamniotis, and A. C. F. Cocks, Creep-plasticity-fatigue calculations in the design of porous double layers for new transpiration cooling systems, Int. J. Fatigue 151, 106304 (2021).

    Article  Google Scholar 

  47. C. X. Shi, China Superalloys Handbook (Book 2): DD406 Alloy (Standards Press of China, Beijing, 2012).

    Google Scholar 

  48. Z. Liu, L. Ye, C. Wang, and Z. Feng, Numerical simulation on impingement and film composite cooling of blade leading edge model for gas turbine, Appl. Thermal Eng. 73, 1432 (2014).

    Article  Google Scholar 

  49. M. Wang, H. Zhu, C. Liu, T. Guo, Z. Wu, and N. Li, Structure improvement on turbine guided vane cooling system based on conjugate heat transfer, Int. J. Thermal Sci. 172, 107332 (2022).

    Article  Google Scholar 

  50. Z. Li, Z. Wen, H. Pei, X. Yue, P. Wang, C. Ai, and Z. Yue, Creep life prediction for a nickel-based single crystal turbine blade, Mech. Adv. Mater. Struct. 29, 6039 (2022).

    Article  Google Scholar 

  51. Y. C. Zhao, H. S. Gao, H. Cheng, Y. H. Zhong, Z. X. Wen, H. Q. Pei, and Z. F. Yue, Reliability study on the fatigue life of film cooling blades in advanced aero-engine turbines: Neglected crystal orientation uncertainty in casting, Aerosp. Sci. Tech. 130, 107880 (2022).

    Article  Google Scholar 

  52. L. M. Kachanov, Introduction to Continuum Damage Mechanics (Springer Dordrecht, Boston, 1986).

    Book  MATH  Google Scholar 

  53. Y. N. Rabotnov, F. A. Leckie, and W. Prager, Creep problems in structural members, J. Appl. Mech. 37, 249 (1970).

    Article  Google Scholar 

  54. N. M. Yeh, E. Krempl, K. Dangvan, S. Kalluri, P. J. Bonacuse, H. Lin, H. Nayebhashemi, J. Weiss, A. Pineau, and D. L. Mcdowell, Advances in Multiaxial Fatigue (ASTM, Philadelphia, 1993).

    Google Scholar 

  55. H. Pei, Y. Yang, S. Gu, Y. Zhao, X. Yao, Z. Wen, and Z. Yue, Study on oxidation-creep behavior of a Ni-based single crystal superalloy based on crystal plasticity theory, Mater. Sci. Eng.-A 839, 142834 (2022).

    Article  Google Scholar 

  56. C. Zhang, W. Hu, Z. Wen, W. Tong, Y. Zhang, Z. Yue, and P. He, Creep residual life prediction of a nickel-based single crystal superalloy based on microstructure evolution, Mater. Sci. Eng.-A 756, 108 (2019).

    Article  Google Scholar 

  57. C. Zhang, P. Wang, Z. Wen, Z. Xu, P. He, and Z. Yue, Study on creep properties of nickel-based superalloy blades based on microstructure characteristics, J. Alloys Compd. 890, 161710 (2022).

    Article  Google Scholar 

  58. Y. Zhao, H. Gao, Z. Wen, X. Zhang, Y. Yang, and Z. Yue, Combined elastic-plastic energy driving criteria of rafting behavior for nickelbased single crystal superalloys, Mater. Sci. Eng.-A 758, 154 (2019).

    Article  Google Scholar 

  59. Z. Guo, D. Huang, and X. Yan, Physics-based modeling of γ/γ′ microstructure evolution and creep constitutive relation for single crystal superalloy, Int. J. Plast. 137, 102916 (2021).

    Article  Google Scholar 

  60. W. D. Pilkey, D. F. Pilkey, and Z. Bi, Peterson’s Stress Concentration Factors (John Wiley & Sons, Hoboken, 2020).

    Book  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 51805307), and the Natural Science Basic Research Program of Shaanxi (Grant Nos. 2021JQ-574 and 2023-JC-YB-068).

Author information

Authors and Affiliations

Authors

Contributions

Dongxu Zhang designed the research. Menghui Lv and Jiapo Wang wrote the first draft of the manuscript. Menghui Lv set up the simulation model and processed the simulation data. Jianwei Liang helped organize the manuscript. Zhuang Luo and Zhixun Wen revised and edited the final version.

Corresponding author

Correspondence to Menghui Lv  (吕盟辉).

Additional information

Conflict of interest

On behalf of all the authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, D., Lv, M., Wang, J. et al. Creep behavior of a film cooling hole at different inclination angles in complex temperature fields. Acta Mech. Sin. 39, 422480 (2023). https://doi.org/10.1007/s10409-023-22480-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10409-023-22480-x

Navigation