Skip to main content
Log in

Numerical investigation of electrohydrodynamic conduction with a temperature gradient

具有温度梯度的电流体动力学传导的数值研究

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

In this work, we present a numerical investigation of the effect of a temperature gradient on the flow characteristics of electrohydrodynamic (EHD) conduction phenomenon. The influence of temperature on the physical properties of dielectric liquids together with the dielectric force has been investigated by a dimensional simulation. To better identify the influence of different forces, a 2D asymmetric parallel electrode configuration with a temperature gradient has been considered. The effect of the dielectric force on the flow pattern and strength of EHD conduction mechanism has been investigated. In order to do this, we vary the dielectric force acting on the flow field by increasing the applied electric field strength and temperature gradient. In the process, we also discuss the effect of the dielectric force direction on the flow field. It is found that the presence of the dielectric force significantly modifies the flow pattern and strength of the system compared to the case of the Coulomb force alone in the flow field. As the applied electric field strength and temperature gradient increase, the effect of the dielectric force on the flow characteristics of EHD conduction mechanism increases.

摘要

本文模拟研究了温度梯度对电传导现象的流动特性的影响, 通过有量纲模拟研究了温度对介电液体物性及介电力的影响. 为了更好地辨别不同力的影响, 本文考虑了具有温度梯度的二维非对称平行电极配置, 研究了介电力对电传导机制的流动模式和强度的影响. 为此, 我们通过增大施加的电场强度和温度梯度来改变作用在流场上的介电力. 在此过程中, 我们同样讨论了介电力方向对流场的影响. 结果表明, 与流场中单独存在库仑力的情况相比, 介电力的存在显着改变了系统的流动模式和强度. 随着施加的电场强度和温度梯度的增大, 介电力对电传导机制的流动特性的影响增强.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. P. A. Vázquez, M. Talmor, J. Seyed-Yagoobi, P. Traoré, and M. Yazdani, In-depth description of electrohydrodynamic conduction pumping of dielectric liquids: Physical model and regime analysis, Phys. Fluids 31, 113601 (2019).

    Article  Google Scholar 

  2. M. Pearson, and J. Seyed-Yagoobi, Advances in electrohydrodynamic conduction pumping, IEEE Trans. Dielect. Electr. Insul. 16, 424 (2009).

    Article  Google Scholar 

  3. J. Seyed-Yagoobi, Electrohydrodynamic pumping of dielectric liquids, J. Electrostatics 63, 861 (2005).

    Article  Google Scholar 

  4. S. I. Jeong, and J. Seyed-Yagoobi, Fluid circulation in an enclosure generated by electrohydrodynamic conduction phenomenon, IEEE Trans. Dielect. Electr. Insul. 11, 899 (2004).

    Article  Google Scholar 

  5. Y. Feng, and J. Seyed-Yagoobi, Understanding of electrohydrodynamic conduction pumping phenomenon, Phys. Fluids 16, 2432 (2004).

    Article  MATH  Google Scholar 

  6. M. R. Pearson, and J. Seyed-Yagoobi, Experimental study of EHD conduction pumping at the meso- and micro-scale, J. Electrostatics 69, 479 (2011).

    Article  Google Scholar 

  7. M. Tanski, M. Kocik, R. Barbucha, K. Garasz, J. Mizeraczyk, J. Kraśniewski, M. Oleksy, A. Hapka, and W. Janke, A system for cooling electronic elements with an EHD coolant flow, J. Phys.-Conf. Ser. 494, 012010 (2014).

    Article  Google Scholar 

  8. N. J. O’Connor, A. J. Castaneda, P. N. Christidis, N. Vayas Tobar, M. Talmor, and J. Yagoobi, Experimental study of flexible electrohydrodynamic conduction pumping for electronics cooling, J. Electron. Packaging 142, 041105 (2020).

    Article  Google Scholar 

  9. V. K. Patel, F. Robinson, J. Seyed-Yagoobi, and J. Didion, Terrestrial and microgravity experimental study of microscale heat-transport device driven by electrohydrodynamic conduction pumping, IEEE Trans. Ind. Applicat. 49, 2397 (2013).

    Article  Google Scholar 

  10. V. Cacucciolo, J. Shintake, Y. Kuwajima, S. Maeda, D. Floreano, and H. Shea, Stretchable pumps for soft machines, Nature 572, 516 (2019).

    Article  Google Scholar 

  11. P. Atten, and J. Seyed-Yagoobi, Electrohydrodynamically induced dielectric liquid flow through pure conductionin point/plane geometry, IEEE Trans. Dielect. Electr. Insul. 10, 27 (2003).

    Article  Google Scholar 

  12. M. Yazdani, and J. Seyed-Yagoobi, Electrically induced dielectric liquid film flow based on electric conduction phenomenon, IEEE Trans. Dielect. Electr. Insul. 16, 768 (2009).

    Article  Google Scholar 

  13. M. Yazdani, and J. Seyed-Yagoobi, Effect of charge mobility on dielectric liquid flow driven by EHD conduction phenomenon, J. Electrostatics 72, 285 (2014).

    Article  Google Scholar 

  14. R. Gharraei, E. Esmaeilzadeh, M. Hemayatkhah, and J. Danaeefar, Experimental investigation of electrohydrodynamic conduction pumping of various liquids film using flush electrodes, J. Electrostatics 69, 43 (2011).

    Article  Google Scholar 

  15. L. Wang, Z. Wei, T. Li, Z. Chai, and B. Shi, A lattice Boltzmann modelling of electrohydrodynamic conduction phenomenon in dielectric liquids, Appl. Math. Model. 95, 361 (2021).

    Article  MathSciNet  MATH  Google Scholar 

  16. V. K. Patel, and J. Seyed-Yagoobi, Long-term performance evaluation of microscale two-phase heat transport device driven by EHD conduction, IEEE Trans. Ind. Applicat. 50, 3011 (2014).

    Article  Google Scholar 

  17. V. K. Patel, J. Seyed-Yagoobi, F. Robinson, and J. R. Didion, Effect of gravity on electrohydrodynamic conduction driven liquid film flow boiling, J. Thermophysics Heat Transfer 30, 429 (2016).

    Article  Google Scholar 

  18. M. Yazdani, and J. S. Yagoobi, The effect of uni/bipolar charge injection on EHD conduction pumping, J. Electrostatics 75, 43 (2015).

    Article  Google Scholar 

  19. M. Nishikawara, H. Yanada, and K. Shomura, Synergy between injection and dissociation mechanisms in electrohydrodynamic pumps modeled numerically, J. Electrostatics 93, 137 (2018).

    Article  Google Scholar 

  20. L. Yang, M. Talmor, and J. Seyed-Yagoobi, Effect of temperature on electrohydrodynamic conduction pumping performance: Proceedings of 2014 IEEE 18th International Conference on Dielectric Liquids (ICDL), Bled, 2014, pp. 1–4.

  21. M. Jafari, N. Farrokhi, and E. Esmaeilzadeh, Effects of working temperature and fluid physical properties on heat transfer enhancement in conduction pumping: An experimental study, Int. J. Thermal Sci. 156, 106471 (2020).

    Article  Google Scholar 

  22. F. Pontiga, and A. Castellanos, Physical mechanisms of instability in a liquid layer subjected to an electric field and a thermal gradient, Phys. Fluids 6, 1684 (1994).

    Article  MATH  Google Scholar 

  23. W. J. Worraker, and A. T. Richardson, The effect of temperature-induced variations in charge carrier mobility on a stationary electrohydrodynamic instability, J. Fluid Mech. 93, 29 (1979).

    Article  MATH  Google Scholar 

  24. L. Onsager, Deviations from Ohm’s law in weak electrolytes, J. Chem. Phys. 2, 599 (1934).

    Article  Google Scholar 

  25. F. Moukalled, L. Mangani, and M. Darwish, The Finite Volume Method in Computational Fluid Dynamics, An Advanced Introduction with OpenFoam and Matlab (Springer, Nueva York, 2016).

    Book  MATH  Google Scholar 

  26. R. D. Selvakumar, J. Wu, J. Huang, and P. Traoré, Electro-thermo-convection in a differentially heated square cavity under arbitrary unipolar injection of ions, Int. J. Heat Fluid Flow 89, 108787 (2021).

    Article  Google Scholar 

  27. B. P. Leonard, A stable and accurate convective modelling procedure based on quadratic upstream interpolation, Comput. Methods Appl. Mech. Eng. 19, 59 (1979).

    Article  MATH  Google Scholar 

  28. B. van Leer, Towards the ultimate conservative difference scheme, J. Comput. Phys. 135, 229 (1997).

    Article  MATH  Google Scholar 

  29. Z. Du, J. Huang, Q. Liu, R. Deepak Selvakumar, and J. Wu, Numerical investigation on electrohydrodynamic conduction pumping with an external flow, Phys. Fluids 33, 123609 (2021).

    Article  Google Scholar 

  30. R. D. Selvakumar, D. Zhonglin, and J. Wu, Heat transfer intensification by EHD conduction pumping for electronic cooling applications, Int. J. Heat Fluid Flow 95, 108972 (2022).

    Article  Google Scholar 

  31. R. Gharraei, M. Hemayatkhah, S. Baheri Islami, and E. Esmaeilzadeh, An experimental investigation on the developing wavy falling film in the presence of electrohydrodynamic conduction phenomenon, Exp. Thermal Fluid Sci. 60, 35 (2015).

    Article  Google Scholar 

  32. M. Mirzaei, and M. Saffar-Avval, Enhancement of convection heat transfer using EHD conduction method, Exp. Thermal Fluid Sci. 93, 108 (2018).

    Article  Google Scholar 

  33. N. El Wakil, N. C. Chereches, and J. Padet, Numerical study of heat transfer and fluid flow in a power transformer, Int. J. Thermal Sci. 45, 615 (2006).

    Article  Google Scholar 

  34. J. Hunt, A. Wray, and P. Moin, Eddies, stream, and convergence zones in turbulent flows: Proceeding of the Summer Program in Center for Turbulence Research, 1988, pp. 193–208.

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 12172110) and Fundamental Research Funds for the Central Universities, China (Grant No. AUGA9803500921). P. A. Vazquez acknowledges Grant No. PGC2018-099217-B-I00 funded by MCIN/AEI/10.13039/501100011033 and by “ERDFA way of making Europe”, and Grant No. CTQ2017-83602-C2–2-R funded by MEC.

Author information

Authors and Affiliations

Authors

Contributions

Author contributions Zhonglin Du: Methodology, Software, Investigation, Writing–original draft. Pedro A. Vázquez : Methodology, Writing–review & editing, Supervision. Jian Wu : Resources, Writing–review & editing, Supervision, Project administration, Funding acquisition.

Corresponding author

Correspondence to Jian Wu  (吴健).

Ethics declarations

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, Z., Vázquez, P.A. & Wu, J. Numerical investigation of electrohydrodynamic conduction with a temperature gradient. Acta Mech. Sin. 39, 222479 (2023). https://doi.org/10.1007/s10409-023-22479-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10409-023-22479-x

Navigation