Skip to main content
Log in

Aeroelastic model of flexible blades of wind turbines under complex wind speed profiles

复杂风速廓线下风力机柔性叶片的气弹模型

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

With the increasing size of wind turbines, the inflow conditions are also becoming more and more complex, and the rotor speed and blade-pitch angle are unknown under complex inflow conditions, so in order to avoid establishing an equivalent wind speed model, the control system was coupled to the blade element momentum theory (BEMT) to establish an aerodynamic model. In addition, due to the increasing flexibility of blades, a structural model of blades that can solve any section shape and any material properties was established based on the geometrically exact beam theory. Finally, the aerodynamic model and the structural model were coupled to establish the aeroelastic model and implemented by C++. The model was applied to engineering calculations, and the aerodynamic characteristics of wind rotors and the dynamic response of blades under different low-level jets (LLJ) were calculated and analyzed. The results show that when the control system is coupled to the BEMT, part of the power error is transferred to the rotor speed for below-rated wind speeds, and all the power error is transferred to blade-pitch angle for the above-rated wind speeds. The structural model can accurately calculate the static, dynamic displacement and natural frequency of the blades. When the LLJ height is different, the control system weakens the influence of strong shear wind on the average aerodynamic force on the sweeping surface of the wind rotor, but the amplitude of aerodynamic force is still greatly affected by the LLJ height. When the aerodynamic force on the blade is similar, the law of structure dynamic response is the same, which is mainly affected by the natural frequency of the blade. Our work has important reference significance for calculating the aerodynamic characteristics of wind rotors and the dynamic response of blades.

摘要

为了建立复杂风速廓线下风力机柔性叶片的气弹模型. 将控制系统耦合到叶素动量理论中建立了气动模型; 再以几何精确梁理 论为基础, 建立了可以求解任意材料和任意截面形状的结构模型; 并将两者结合, 建立了风力机气弹模型, 编写了完整的C++代码; 最后 将该模型应用到实际工程, 计算了低空急流入流条件下风轮的气动特性和叶片的动态响应. 结果表明: 本文的模型和代码是准确的, 并 且当控制系统耦合到气动力计算方法中时, 在额定风速之前, 部分功率误差传递到了转速, 在额定风速以后, 全部的功率误差传递到了 桨距角; 结构模型可以准确的计算风力机叶片的静态, 动态变形以及特征频率; 当低空急流高度不同时, 控制系统弱化了强剪切风对风 轮平均气动力的影响, 但是气动力变化的幅值仍然受低空急流高度影响很大, 因此风场微观选址时, 塔筒高度的选择需要考虑低空急 流高度的影响; 当叶片上的气动力相似时, 叶片动态响应的规律相似, 主要被叶片的特征频率影响. 本文工作对风力机叶片气弹研究具 有参考意义.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Z. Gao, X. Feng, Z. Zhang, Z. Liu, X. Gao, L. Zhang, S. Li, and Y. Li, A brief discussion on offshore wind turbine hydrodynamics problem, J. Hydrodyn. 34, 15 (2022).

    Article  Google Scholar 

  2. S. N. Gadde, and R. J. A. M. Stevens, Effect of low-level jet height on wind farm performance, J. Renew. Sustain. Energy 13, 013305 (2021).

    Article  Google Scholar 

  3. T. Chatterjee, J. Li, S. Yellapantula, B. Jayaraman, and E. Quon, Wind farm response to mesoscale-driven coastal low level jets: A multiscale large eddy simulation study, J. Phys. Conf. Ser. 2265, 022004 (2022).

    Article  Google Scholar 

  4. P. Baas, F. C. Bosveld, H. Klein Baltink, and A. A. M. Holtslag, A climatology of nocturnal low-level jets at Cabauw, J. Appl. Meteor. Climatology 48, 1627 (2009).

    Article  Google Scholar 

  5. R. M. Banta, Stable-boundary-layer regimes from the perspective of the low-level jet, Acta Geophys. 56, 58 (2008).

    Article  Google Scholar 

  6. A.-S. Smedman, U. Högström, and H. Bergström, Low level jets—A decisive factor for off-shore wind energy siting in the Baltic Sea, Wind Eng. 20, 137 (1996).

    Google Scholar 

  7. S. Greene, K. McNabb, R. Zwilling, M. Morrissey, and S. Stadler, Analysis of vertical wind shear in the Southern Great Plains and potential impacts on estimation of wind energy production, Int. J. Global Energy Issues 32, 191 (2009).

    Article  Google Scholar 

  8. G. van Kuik, and J. Peinke, Long-Term Research Challenges in Wind Energy—A Research Agenda by the European Academy of Wind Energy (Springer, Cham, 2016).

    Book  Google Scholar 

  9. F. Porté-Agel, M. Bastankhah, and S. Shamsoddin, Wind-turbine and wind-farm flows: A review, Boundary-layer Meteorology 174: 1 (2020).

    Article  Google Scholar 

  10. J. A. Aird, R. J. Barthelmie, T. J. Shepherd, and S. C. Pryor, WRF-simulated low-level jets over Iowa: Characterization and sensitivity studies, Wind Energ. Sci. 6, 1015 (2020).

    Article  Google Scholar 

  11. J. Wilczak, C. Finley, J. Freedman, J. Cline, L. Bianco, J. Olson, I. Djalalova, L. Sheridan, M. Ahlstrom, J. Manobianco, J. Zack, J. R. Carley, S. Benjamin, R. Coulter, L. K. Berg, J. Mirocha, K. Clawson, E. Natenberg, and M. Marquis, The wind forecast improvement project (WFIP): A public-private partnership addressing wind energy forecast needs, Bull. Am. Meteorol. Soc. 96, 1699 (2015).

    Article  Google Scholar 

  12. J. A. Aird, R. J. Barthelmie, T. J. Shepherd, and S. C. Pryor, Occurrence of low-level jets over the eastern U.S. coastal zone at heights relevant to wind energy, Energies 15, 445 (2022).

    Article  Google Scholar 

  13. J. A. Aird, R. J. Barthelmie, T. J. Shepherd, and S. C. Pryor, WRF-Simulated springtime low-level jets over Iowa: Implications for wind energy, J. Phys.-Conf. Ser. 1618, 062020 (2020).

    Article  Google Scholar 

  14. S. N. Gadde, L. Liu, and R. J. A. M. Stevens, Effect of low-level jet on turbine aerodynamic blade loading using large-eddy simulations, J. Phys.-Conf. Ser. 1934, 012001 (2021).

    Article  Google Scholar 

  15. A. Doosttalab, D. Siguenza-Alvarado, V. Pulletikurthi, Y. Jin, H. Bocanegra Evans, L. P. Chamorro, and L. Castillo, Interaction of low-level jets with wind turbines: On the basic mechanisms for enhanced performance, J. Renew. Sustain. Energy 12, 053301 (2020).

    Article  Google Scholar 

  16. S. N. Gadde, and R. J. A. M. Stevens, Interaction between low-level jets and wind farms in a stable atmospheric boundary layer, Phys. Rev. Fluids 6, 014603 (2021).

    Article  Google Scholar 

  17. N. Wildmann, M. Hagen, and T. Gerz, Enhanced resource assessment and atmospheric monitoring of the research wind farm WiValdi, J. Phys.-Conf. Ser. 2265, 022029 (2022).

    Article  Google Scholar 

  18. P. He, and J. Xia, Study on the influence of low-level jet on the aerodynamic characteristics of horizontal axis wind turbine rotor based on the aerodynamics-controller interaction method, Energies 15, 2709 (2022).

    Article  Google Scholar 

  19. J. Kelly, C. Vogel, and R. Willden, Impact and mitigation of blade surface roughness effects on wind turbine performance, Wind Energy 25, 660 (2022).

    Article  Google Scholar 

  20. B. Ji, K. Zhong, Q. Xiong, P. Qiu, X. Zhang, and L. Wang, CFD simulations of aerodynamic characteristics for the three-blade NREL Phase VI wind turbine model, Energy 249, 123670 (2022).

    Article  Google Scholar 

  21. C. Yuan, J. Wang, Y. Pan, H. Chen, and X. Zhang, Numerical simulation of wind turbine aerodynamic characteristics under wind shear based on Lattice-Boltzmann method, E3S Web Conf. 248, 01070 (2021).

    Article  Google Scholar 

  22. R. Stanly, L. A. Martínez-Tossas, S. H. Frankel, and Y. Delorme, Large-eddy simulation of a wind turbine using a filtered actuator line model, J. Wind Eng. Industrial Aerodyn. 222, 104868 (2022).

    Article  Google Scholar 

  23. L. Liu, L. Franceschini, D. F. Oliveira, F. C. C. Galeazzo, B. S. Carmo, and R. J. A. M. Stevens, Evaluating the accuracy of the actuator line model against blade element momentum theory in uniform inflow, Wind Energy 25, 1046 (2022).

    Article  Google Scholar 

  24. K. A. R. Ismail, and W. M. Okita, A comprehensive comparative investigation of the lifting line theory and blade element momentum theory applied to small wind turbines, J. Energy Resour. Tech. 144, (2022).

  25. I. Masters, J. C. Chapman, M. R. Willis, and J. A. C. Orme, A robust blade element momentum theory model for tidal stream turbines including tip and hub loss corrections, J. Mar. Eng. Tech. 10, 25 (2011).

    Article  Google Scholar 

  26. M. Elgammi, and T. Sant, A new stall delay algorithm for predicting the aerodynamics loads on wind turbine blades for axial and yawed conditions, Wind Energy 20, 1645 (2017).

    Article  Google Scholar 

  27. O. Hach, H. Verdonck, J. D. Polman, C. Balzani, S. Müller, J. Rieke, and H. Hennings, Wind turbine stability: Comparison of state-of-the-art aeroelastic simulation tools, J. Phys.-Conf. Ser. 1618, 052048 (2020).

    Article  Google Scholar 

  28. A. Arabgolarcheh, S. Jannesarahmadi, and E. Benini, Modeling of near wake characteristics in floating offshore wind turbines using an actuator line method, Renew. Energy 185, 871 (2022).

    Article  Google Scholar 

  29. Y. Liu, Y. Qiao, S. Han, T. Tao, J. Yan, L. Li, G. Bekhbat, and E. Munkhtuya, Rotor equivalent wind speed calculation method based on equivalent power considering wind shear and tower shadow, Renew. Energy 172, 882 (2021).

    Article  Google Scholar 

  30. S. Wan, L. Cheng, and X. Sheng, Numerical analysis of the spatial distribution of equivalent wind speeds in large-scale wind turbines, J. Mech. Sci. Technol. 31, 965 (2017).

    Article  Google Scholar 

  31. A. del Carre, A. Muñoz-Simón, N. Goizueta, and R. Palacios, SHARPy: A dynamic aeroelastic simulation toolbox for very flexible aircraft and wind turbines, J. Open Source Software 4, 1885 (2019).

    Article  Google Scholar 

  32. L. Wang, X. Liu, N. Renevier, M. Stables, and G. M. Hall, Nonlinear aeroelastic modelling for wind turbine blades based on blade element momentum theory and geometrically exact beam theory, Energy 76, 487 (2014).

    Article  Google Scholar 

  33. A. Sabale, and K. V. N. Gopal, Nonlinear aeroelastic response of wind turbines using Simo-Vu-Quoc rods, Appl. Math. Model. 65, 696 (2019).

    Article  MathSciNet  MATH  Google Scholar 

  34. S. Tang, B. Sweetman, and J. Gao, Nonlinear effects and dynamic coupling of floating offshore wind turbines using geometrically-exact blades and momentum-based methods, Ocean Eng. 229, 108866 (2021).

    Article  Google Scholar 

  35. Z. Li, B. Wen, X. Dong, Z. Peng, Y. Qu, and W. Zhang, Aerodynamic and aeroelastic characteristics of flexible wind turbine blades under periodic unsteady inflows, J. Wind Eng. Ind. Aerodyn. 197, 104057 (2020).

    Article  Google Scholar 

  36. E. Reissner, On one-dimensional finite-strain beam theory: The plane problem, J. Appl. Math. Phys. 23, 795 (1972).

    MATH  Google Scholar 

  37. J. C. Simo, and L. Vu-Quoc, On the dynamics in space of rods undergoing large motions—A geometrically exact approach, Comput. Methods Appl. Mech. Eng. 66, 125 (1988).

    Article  MathSciNet  MATH  Google Scholar 

  38. D. H. Hodges, Nonlinear Composite Beam Theory (American Institute of Aeronautics and Astronautics, Reston, 2006).

    Book  Google Scholar 

  39. H. Chen, W. Yu, and M. Capellaro, A critical assessment of computer tools for calculating composite wind turbine blade properties, Wind Energy 13, 497 (2009).

    Article  Google Scholar 

  40. W. Yu, and M. Blair, GEBT: A general-purpose nonlinear analysis tool for composite beams, Compos. Struct. 94, 2677 (2012).

    Article  Google Scholar 

  41. G. Michel, and A. Cardona, Flexible Multibody Dynamics: A Finite Element Approach (John Wiley & Sons, New York, 2001).

    Google Scholar 

  42. D. C. Maniaci, in An Investigation of WT_Perf Convergence Issues: Proceedings of the 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, Orlando, 2011.

  43. S. A. Ning, A simple solution method for the blade element momentum equations with guaranteed convergence, Wind Energy, (2013).

  44. S. A. Ning, G. Hayman, R. Damiani, and J. Jonkman, in Development and validation of a new blade element momentum skewed-wake model within aerodyn: Proceedings of the 33rd Wind Energy Symposium, Kissimmee, 2015.

  45. J. M. Jonkman, S. Butterfield, W. Musial, and G. Scott, Definition of a 5-MW Reference Wind Turbine for Offshore System Development, Technical Report (National Renewable Energy Lab, Golden, 2009).

    Book  Google Scholar 

  46. D. H. Hodges, X. Shang, and C. E. S. Cesnik, Finite element solution of nonlinear intrinsic equations for curved composite beams, J. Am. Helicopter Soc. 41, 313 (1996).

    Article  Google Scholar 

  47. Q. Wang, and W. Yu, Geometrically nonlinear analysis of composite beams using Wiener-Milenković parameters, J. Renew. Sustain. Energy 9, 033306 (2017).

    Article  Google Scholar 

  48. T. N. Le, J. M. Battini, and M. Hjiaj, Dynamics of 3D beam elements in a corotational context: A comparative study of established and new formulations, Finite Elem. Anal. Des. 61, 97 (2012).

    Article  MathSciNet  Google Scholar 

  49. Q. Wang, N. Johnson, M. A. Sprague, and J. M. Jonkman, in BeamDyn: A High-Fidelity Wind Turbine Blade Solver in the FAST Modular Framework: Proceedings of 33rd Wind Energy Symposium, Kissimmee, 2015.

  50. M. S. Jeong, M. C. Cha, S. W. Kim, and I. Lee, Numerical investigation of optimal yaw misalignment and collective pitch angle for load imbalance reduction of rigid and flexible HAWT blades under sheared inflow, Energy 84, 518 (2015).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Pan He designed the research. Pan He and Jian Xia designed the computer programs and wrote the code. Pan He verified the model and processed and analyzed the data. Pan He organized the manuscript. Jian Xia revised and edited the final version.

Corresponding author

Correspondence to Jian Xia  (夏健).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, P., Xia, J. Aeroelastic model of flexible blades of wind turbines under complex wind speed profiles. Acta Mech. Sin. 39, 322477 (2023). https://doi.org/10.1007/s10409-023-22477-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10409-023-22477-x

Navigation