Skip to main content
Log in

Effect of DLVO interactions on the rheology and microstructure of non-Brownian suspensions

DLVO作用力对非布朗悬浮液的流变学和微观结构的影响

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

The macroscopic rheological properties of suspensions are often inextricably related to changes in their microstructure, and a number of experimental studies have demonstrated the significant influence of DLVO (Derjaguin-Landau-Verwey-Overbeek) interactions, namely microscopic repulsive and attractive forces due to surface charge on particles in suspensions, on the microstructure of suspensions, especially on cluster formation. In this study, the rheological properties of non-Brownian suspensions and their microstructures are investigated by numerical simulations combining DLVO interactions with hydrodynamics and frictional contacts. Different mechanisms have been identified to account for diverse rheological responses of repulsive and adhesive suspensions, revealing a significant association between the evolution of particle clusters and suspension rheology. In repulsive systems, competitions between repulsive and hydrodynamic forces and the resulting change in the distribution of minimum particle separation are responsible for the first shear thinning at low shear rates. Shear thickening is observed at high shear rates and is dominated by particles contacts. Enhancing attractive forces give rise to the viscosity of the suspensions while obscuring shear thickening, and particles make contacts even at the first shear thinning conditions. The second normal stress difference exhibit similar evolution with viscosity while the first normal stress difference is mainly dominated by fluctuations. Microstructure analysis shows frictional clusters appear in repulsive suspensions with growth in both quantity and size as shear rate increases. Clusters in strongly adhesive suspensions, on the other hand, break into smaller ones, resulting in a viscosity reduction. The calculation of the shape anisotropy indicates that frictional clusters in repulsive suspensions tend to expand uniformly in simulation box whereas at high attractive strength, clusters deform more cylindrical when strongly sheared. Our studies in microstructure can fundamentally help in bridging the gap between microscale evolution and macroscale rheological responses, thus contributing to the foundation of the constitutive model of non-Brownian suspensions.

摘要

悬浮液的宏观流变特性往往与它们的微观结构变化密不可分, 一些实验研究表明DLVO相互作用, 即由于悬浮颗粒表面电荷而 产生的微观排斥力和吸引力, 对悬浮液的微观结构, 特别是对团簇的形成有重大影响. 在这项研究中, 通过结合DLVO作用力与水动力 和摩擦接触的数值模拟研究了非布朗悬浮液的流变特性及其微观结构. 本文确定了不同的机制来解释排斥性和黏附性悬浮液的不同 流变反应, 揭示了颗粒团簇的演变和悬浮液流变学之间的重要联系. 在排斥性系统中, 排斥力和水动力之间的竞争以及由此产生的最 小颗粒分离分布的变化是在低剪切率下第一次剪切变稀的原因. 剪切增稠是在高剪切率下观察到的, 并且由颗粒接触主导. 吸引力的 增强加大了悬浮液的黏度, 同时掩盖了剪切增稠, 即使在第一次剪切变稀的条件下, 颗粒也会进行接触. 第二法向应力差表现出与黏度 相似的演变, 而第一法向应力差主要是由波动主导的. 微观结构分析显示, 摩擦性团簇出现在排斥性悬浮液中, 随着剪切率的增加, 其 数量和尺寸都在增长. 另一方面, 强吸引力悬浮液中的团簇会分解成更小的团簇, 导致黏度降低. 形状各向异性的计算表明, 排斥性悬 浮液中的摩擦性团簇倾向于在模拟箱中均匀地膨胀, 而在高吸引强度下, 团簇在强剪切时趋向于圆柱形. 我们在微观结构方面的研究 可以帮助弥合微观演化和宏观流变反应之间的差距, 从而为非布朗悬浮液的本构模型的建立作出贡献.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. H. A. Barnes, Shear-Thickening (“Dilatancy”) in Suspensions of Nonaggregating Solid Particles Dispersed in Newtonian Liquids, J. Rheology 33, 329 (1989).

    Article  Google Scholar 

  2. M. Hasanzadeh, and V. Mottaghitalab, The role of shear-thickening fluids (STFs) in ballistic and stab-resistance improvement of flexible armor, J. Mater. Eng. Perform. 23, 1182 (2014).

    Article  Google Scholar 

  3. W. H. Li, and H. Du, Design and Experimental Evaluation of a Magnetorheological Brake, Int. J. Adv. Manuf. Tech. 21, 508 (2003).

    Article  Google Scholar 

  4. D. R. Foss, and J. F. Brady, Structure, diffusion and rheology of Brownian suspensions by Stokesian dynamics simulation, J. Fluid Mech. 407, 167 (2000).

    Article  MATH  Google Scholar 

  5. D. Lootens, H. van Damme, Y. Hémar, and P. Hébraud, Dilatant flow of concentrated suspensions of rough particles, Phys. Rev. Lett. 95, 268302 (2005).

    Article  Google Scholar 

  6. J. Comtet, G. Chatté, A. Nigués, L. Bocquet, A. Siria, and A. Colin, Pairwise frictional profile between particles determines discontinuous shear thickening transition in non-colloidal suspensions, Nat. Commun. 8, 15633 (2017).

    Article  Google Scholar 

  7. R. Seto, R. Mari, J. F. Morris, and M. M. Denn, Discontinuous shear thickening of frictional hard-sphere suspensions, Phys. Rev. Lett. 111, 218301 (2013), arXiv: 1306.5985.

    Article  Google Scholar 

  8. R. Mari, R. Seto, J. F. Morris, and M. M. Denn, Shear thickening, frictionless and frictional rheologies in non-Brownian suspensions, J. Rheology 58, 1693 (2014), arXiv: 1403.6793.

    Article  Google Scholar 

  9. S. Pednekar, J. Chun, and J. F. Morris, Simulation of shear thickening in attractive colloidal suspensions, Soft Matter 13, 1773 (2017).

    Article  Google Scholar 

  10. A. Singh, S. Pednekar, J. Chun, M. M. Denn, and J. F. Morris, From yielding to shear jamming in a cohesive frictional suspension, Phys. Rev. Lett. 122, 098004 (2019), arXiv: 1809.06020.

    Article  Google Scholar 

  11. E. J. W. Verwey, J. T. G. Overbeek, and K. van Nes, Theory of the stability of lyophobic colloids (Elsevier, Amsterdam, 1948).

    Google Scholar 

  12. B. Derjaguin, and L. Landau, Theory of the stability of strongly charged lyophobic sols and of the adhesion of strongly charged particles in solutions of electrolytes, Prog. Surf. Sci. 43, 30 (1941).

    Article  Google Scholar 

  13. R. V. More and A. M. Ardekani, Unifying disparate rate-dependent rheological regimes in non-Brownian suspensions, Phys. Rev. E 103, 062610 (2021).

    Article  Google Scholar 

  14. A. Monti, V. Rathee, A. Q. Shen, and M. E. Rosti, A fast and efficient tool to study the rheology of dense suspensions, Phys. Fluids 33, 103314 (2021), arXiv: 2108.01013.

    Article  Google Scholar 

  15. S. Srinivasan, H. E. A. Van den Akker, and O. Shardt, Inclusion of DLVO forces in simulations of non-Brownian solid suspensions: Rheology and structure, Int. J. Multiphase Flow 149, 103929 (2022).

    Article  MathSciNet  Google Scholar 

  16. J. N. Israelachvili, Intermolecular and surface forces (Academic press, San Diego, 2011).

    Google Scholar 

  17. E. Brown, N. A. Forman, C. S. Orellana, H. Zhang, B. W. Maynor, D. E. Betts, J. M. Desimone, and H. M. Jaeger, Generality of shear thickening in dense suspensions, Nat. Mater 9, 220 (2010), arXiv: 0907.4999.

    Article  Google Scholar 

  18. G. V. Franks, Z. Zhou, N. J. Duin, and D. V. Boger, Effect of interparticle forces on shear thickening of oxide suspensions, J. Rheology 44, 759 (2000).

    Article  Google Scholar 

  19. F. Parsi, and F. Gadala-Maria, Fore-and-Aft asymmetry in a concentrated suspension of solid spheres, J. Rheology 31, 725 (1987).

    Article  Google Scholar 

  20. Y. Yurkovetsky, and J. F. Morris, Triplet correlation in sheared suspensions of Brownian particles, J. Chem. Phys. 124, 204908 (2006).

    Article  Google Scholar 

  21. G. Bossis, and J. F. Brady, The rheology of Brownian suspensions, J. Chem. Phys. 91, 1866 (1989).

    Article  Google Scholar 

  22. X. Cheng, J. H. McCoy, J. N. Israelachvili, and I. Cohen, Imaging the microscopic structure of shear thinning and thickening colloidal suspensions, Science 333, 1276 (2011).

    Article  Google Scholar 

  23. D. J. Jacobs, and M. F. Thorpe, Generic rigidity percolation: the pebble game, Phys. Rev. Lett. 75, 4051 (1995).

    Article  Google Scholar 

  24. D. B. Genovese, Shear rheology of hard-sphere, dispersed, and aggregated suspensions, and filler-matrix composites, Adv. Colloid Interface Sci. 171–172, 1 (2012).

    Article  Google Scholar 

  25. D. Quemada, and C. Berli, Energy of interaction in colloids and its implications in rheological modeling, Adv. Colloid Interface Sci. 98, 51 (2002).

    Article  Google Scholar 

  26. S. Plimpton, Fast parallel algorithms for short-range molecular dynamics, J. Comput. Phys. 117, 1 (1995).

    Article  MATH  Google Scholar 

  27. C. Ness, Z. Xing, and E. Eiser, Oscillatory rheology of dense, athermal suspensions of nearly hard spheres below the jamming point, Soft Matter 13, 3664 (2017).

    Article  Google Scholar 

  28. C. Ness, R. Mari, and M. E. Cates, Shaken and stirred: Random organization reduces viscosity and dissipation in granular suspensions, Sci. Adv. 4, eaar3296 (2018), arXiv: 1804.01262.

    Article  Google Scholar 

  29. O. Cheal, and C. Ness, Rheology of dense granular suspensions under extensional flow, J. Rheology 62, 501 (2018), arXiv: 1801.03805.

    Article  Google Scholar 

  30. R. C. Ball, and J. R. Melrose, A simulation technique for many spheres in quasi-static motion under frame-invariant pair drag and Brownian forces, Phys. A-Stat. Mech. Appl. 247, 444 (1997).

    Article  Google Scholar 

  31. M. Trulsson, B. Andreotti, and P. Claudin, Transition from the viscous to inertial regime in dense suspensions, Phys. Rev. Lett. 109, 118305 (2012), arXiv: 1204.2732.

    Article  Google Scholar 

  32. A. Singh, C. Ness, R. Seto, J. J. de Pablo, and H. M. Jaeger, Shear thickening and jamming of dense suspensions: The “roll” of friction, Phys. Rev. Lett. 124, 248005 (2020), arXiv: 2002.10996.

    Article  Google Scholar 

  33. J. R. Royer, D. L. Blair, and S. D. Hudson, Rheological signature of frictional interactions in shear thickening suspensions, Phys. Rev. Lett. 116, 188301 (2016), arXiv: 1603.00422.

    Article  Google Scholar 

  34. G. Chatté, J. Comtet, A. Nigués, L. Bocquet, A. Siria, G. Ducouret, F. Lequeux, N. Lenoir, G. Ovarlez, and A. Colin, Shear thinning in non-Brownian suspensions, Soft Matter 14, 879 (2018).

    Article  Google Scholar 

  35. A. P. Thompson, S. J. Plimpton, and W. Mattson, General formulation of pressure and stress tensor for arbitrary many-body interaction potentials under periodic boundary conditions, J. Chem. Phys. 131, 154107 (2009).

    Article  Google Scholar 

  36. L. E. Edens, E. G. Alvarado, A. Singh, J. F. Morris, G. K. Schenter, J. Chun, and A. E. Clark, Shear stress dependence of force networks in 3D dense suspensions, Soft Matter 17, 7476 (2021).

    Article  Google Scholar 

  37. E. Küçüksönmez, and J. Servantie, Shear thinning and thickening in dispersions of spherical nanoparticles, Phys. Rev. E 102, 012604 (2020).

    Article  Google Scholar 

  38. D. W. Schaefer, J. E. Martin, P. Wiltzius, and D. S. Cannell, Fractal geometry of colloidal aggregates, Phys. Rev. Lett. 52, 2371 (1984).

    Article  Google Scholar 

  39. C. Aubert, and D. S. Cannell, Restructuring of colloidal silica aggregates, Phys. Rev. Lett. 56, 738 (1986).

    Article  Google Scholar 

  40. J. P. Pantina, and E. M. Furst, Colloidal aggregate micromechanics in the presence of divalent ions, Langmuir 22, 5282 (2006).

    Article  Google Scholar 

  41. A. Tordesillas, D. M. Walker, G. Froyland, J. Zhang, and R. P. Behringer, Transition dynamics and magic-number-like behavior of frictional granular clusters, Phys. Rev. E 86, 11 (2012).

    Article  Google Scholar 

  42. M. Gameiro, A. Singh, L. Kondic, K. Mischaikow, and J. F. Morris, Interaction network analysis in shear thickening suspensions, Phys. Rev. Fluids 5, 034307 (2020), arXiv: 1903.08493.

    Article  Google Scholar 

  43. D. N. Theodorou, and U. W. Suter, Shape of unperturbed linear polymers: polypropylene, Macromolecules 18, 1206 (1985).

    Article  Google Scholar 

  44. A. Stukowski, Visualization and analysis of atomistic simulation data with OVITO—the open visualization tool, Model. Simul. Mater. Sci. Eng. 18, 015012 (2009).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 12222211 and 11972322). We thank Christopher Ness for useful discussions on simulating with LAMMPS.

Author information

Authors and Affiliations

Authors

Contributions

Jinhe Wang and Dingyi Pan proposed the research topic and worked out the framework to solve the problem. Jinhe Wang conducted the numerical simulations and processed simulation data. Jinhe Wang wrote the first draft of the manuscript and made all figures and tables in the manuscript. Dingyi Pan supervised the project, revised and edited the final version, and received the funding.

Corresponding author

Correspondence to Dingyi Pan  (潘定一).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Pan, D. Effect of DLVO interactions on the rheology and microstructure of non-Brownian suspensions. Acta Mech. Sin. 39, 322469 (2023). https://doi.org/10.1007/s10409-023-22469-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10409-023-22469-x

Keywords

Navigation