Skip to main content
Log in

An elastic-plastic theoretical analysis model of wheel-rail rolling contact behaviour

轮轨滚动接触行为弹塑性理论分析模型

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

An accurate wheel-rail contact theoretical model is crucial for predicting wheel-rail wear and rolling contact fatigue. The plastic damage occurs frequently in the high-speed wheel-rail contact area at present; however, the state-of-the-art wheel-rail rolling contact theoretical models hardly take into account plastic behaviour. In this study, a three-dimensional elastic-plastic theoretical analysis model of wheel-rail rolling contact was established, based on the Vermeulen-Johnson (V-J) rolling contact theory and the bilinear hardening model. The stress distribution of the elastic-plastic wheel-rail contact area was expounded, the analytical formula of elastic-plastic creep force/creepage was derived, and the mapping relationship of wheel-rail elastic-plastic creep force/creepage was constructed. Besides, the strain rate effect of wheel/rail materials on the elastic-plastic creep force/creepage curve was also investigated. Finally, the proposed elastic-plastic theoretical model was verified by the corresponding experimental and finite element simulation results. The results indicate that the plastic deformation in the wheel-rail contact area leads to a decrease in the initial slope of the creep force/creepage curve, but an increase in the saturation creepage. The strain rate effect increases the initial slope of the elastic-plastic creep force/creepage curve. The proposed theoretical model is of great significance to the damage assessment of high-speed wheel-rail systems.

摘要

轮轨接触理论模型对准确预测轮轨磨损和滚动接触疲劳至关重要. 目前高速轮轨接触区域的塑性损伤频繁发生, 然而现有的轮 轨滚动接触理论模型极少考虑轮轨塑性力学行为. 本文基于Vermeulen-Johnson滚动接触理论和双线性强化模型, 建立了三维轮轨滚动 接触弹塑性理论分析模型, 阐明了轮轨弹塑性接触区域应力分布规律, 给出了弹塑性蠕滑力/率解析式, 构建了轮轨滚动接触弹塑性蠕 滑力/率映射关系, 讨论了轮轨材料应变率效应对弹塑性蠕滑力/率的影响, 并通过试验和有限元仿真验证了轮轨滚动接触弹塑性理论 模型的有效性. 研究结果还表明, 轮轨接触区域塑性变形导致蠕滑力/率曲线初始斜率减小、饱和蠕滑率增大, 轮轨材料应变率效应会 增大弹塑性蠕滑力/率曲线初始斜率. 本文提出的理论模型对高速轮轨系统的损伤评估具有重要意义.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. W. Zhai, X. Jin, Z. Wen, and X. Zhao, Wear problems of high-speed wheel/rail systems: Observations, causes, and countermeasures in China, Appl. Mech. Rev. 72, 060801 (2020).

    Article  Google Scholar 

  2. L. Jing, K. Wang, and W. Zhai, Impact vibration behavior of railway vehicles: A state-of-the-art overview, Acta Mech. Sin. 37, 1193 (2021).

    Article  MathSciNet  Google Scholar 

  3. X. Zhou, J. Wang, and L. Jing, Coupling effects of strain rate and fatigue damage on wheel-rail rolling contact behaviour: A dynamic finite element simulation, Int. J. Rail Transp. (2022).

  4. Y. Yang, X. Guo, L. Ling, K. Wang, and W. Zhai, Effect of gauge corner lubrication on wheel/rail non-Hertzian contact and rail surface damage on the curves, Acta Mech. Sin. 38, 521522 (2022).

    Article  Google Scholar 

  5. P. Wang, C. Xie, X. Yang, G. Tao, and Z. Wen, Wheel wear and rolling contact fatigue evolution under interaction of abrasive block and wheel-rail contact: Results from field test, Int. J. Rail Transp. (2022).

  6. H. Hertz, Ueber die Berührung fester elastischer Körper, J. Für Die Reine Und Angewandte Mathematik 92, 156 (1882).

    MathSciNet  MATH  Google Scholar 

  7. F. W. Carter, On the action of locomotive driving wheel, Proc. R. Soc. London A 112, 151 (1926).

    Article  MATH  Google Scholar 

  8. P. J. Vermuelen, and K. L. Johnson, Contact of nonspherical elastic bodies transmitting tangential forces, J. Appl. Mech. 31, 33 (1964).

    Google Scholar 

  9. J. J. Kalker, On the Rolling Contact of Two Elastic Bodies in the Presence of Dry Friction, Dissertation for Doctoral Degree (Delft University of Technology, The Netherlands, 1967).

    Google Scholar 

  10. J. J. Kalker, Survey of wheel-rail rolling contact theory, Veh. Syst. Dyn. 8, 317 (1979).

    Article  Google Scholar 

  11. J. J. Kalker, A fast algorithm for the simplified theory of rolling contact, Veh. Syst. Dyn. 11, 1 (1982).

    Article  Google Scholar 

  12. J. J. Kalker, Three-Dimensional Elastic Bodies in Rolling Contact (Kluwer Academic Publishers, Dordrecht, 1990).

    Book  MATH  Google Scholar 

  13. J. J. Kalker, F. M. Dekking, and E. A. H. Vollebregt, Simulation of rough, elastic contacts, J. Appl. Mech. 64, 361 (1997).

    Article  MATH  Google Scholar 

  14. Z. Y. Shen, J. K. Hedrick, and J. A. Elkins Manager of, A comparison of alternative creep force models for rail vehicle dynamic analysis, Veh. Syst. Dyn. 12, 79 (1983).

    Article  Google Scholar 

  15. O. Polach, A fast wheel-rail forces calculation computer code, Veh. Syst. Dyn. 33, 728 (2000).

    Article  Google Scholar 

  16. J. B. Ayasse, and H. Chollet, Determination of the wheel rail contact patch in semi-Hertzian conditions, Veh. Syst. Dyn. 43, 161 (2005).

    Article  Google Scholar 

  17. J. P. Pascal, and G. Sauvage, The available methods to calculate the wheel/rail forces in non Hertzian contact patches and rail damaging, Veh. Syst. Dyn. 22, 263 (1993).

    Article  Google Scholar 

  18. J. Piotrowski, and W. Kik, A simplified model of wheel/rail contact mechanics for non-Hertzian problems and its application in rail vehicle dynamic simulations, Veh. Syst. Dyn. 46, 27 (2008).

    Article  Google Scholar 

  19. B. Liu, S. Bruni, and E. Vollebregt, A non-Hertzian method for solving wheel-rail normal contact problem taking into account the effect of yaw, Veh. Syst. Dyn. 54, 1226 (2016).

    Article  Google Scholar 

  20. Y. Sun, W. Zhai, and Y. Guo, A robust non-Hertzian contact method for wheel-rail normal contact analysis, Veh. Syst. Dyn. 56, 1899 (2018).

    Article  Google Scholar 

  21. K. Hou, J. Kalousek, and E. Magel, Rheological model of solid layer in rolling contact, Wear 211, 134 (1997).

    Article  Google Scholar 

  22. A. Meierhofer, C. Hardwick, R. Lewis, K. Six, and P. Dietmaier, Third body layer—experimental results and a model describing its influence on the traction coefficient, Wear 314, 148 (2014).

    Article  Google Scholar 

  23. C. V. D. Wekken, and E. Vollebregt, in Local plasticity modelling and its influence on wheel-rail friction: Proceedings of the 11th International Conference on Contact Mechanics and Wear of Rail/ Wheel Systems, Delft, 2018.

  24. G. Li, H. Wang, Y. Zhou, and X. Cao, Research on the evolution of the wheel polygon based on the iterative model of long-term wear on both sides of the wheelset, Veh. Syst. Dyn., (2022).

  25. X. Zhou, L. Jing, and X. Ma, Dynamic finite element simulation of wheel-rail contact response for the straight track case, Adv. Struct. Eng. 24, 856 (2021).

    Article  Google Scholar 

  26. L. Jing, X. Su, C. Feng, and L. Zhou, Strain-rate dependent tensile behavior of railway wheel/rail steels with equivalent fatigue damage: Experiment and constitutive modeling, Eng. Fract. Mech. 275, 108839 (2022).

    Article  Google Scholar 

  27. D. Cui, X. Zhang, R. Wang, B. An, and L. Li, The effect of 3D wear state of wheel polygon on wheel-rail system dynamics, Veh. Syst. Dyn. 60, 3109 (2022).

    Article  Google Scholar 

  28. L. Jing, Z. Liu, and K. Liu, A mathematically-based study of the random wheel-rail contact irregularity by wheel out-of-roundness, Veh. Syst. Dyn. 60, 335 (2022).

    Article  Google Scholar 

  29. H. Zhu, Y. Zhao, Z. He, R. Zhang, and S. Ma, An elastic-plastic contact model for line contact structures, Sci. China-Phys. Mech. Astron. 61, 054611 (2018).

    Article  Google Scholar 

  30. V. Brizmer, Y. Kligerman, and I. Etsion, The effect of contact conditions and material properties on the elasticity terminus of a spherical contact, Int. J. Solids Struct. 43, 5736 (2006).

    Article  MATH  Google Scholar 

  31. C. Thornton, and Z. Ning, A theoretical model for the stick/bounce behaviour of adhesive, elastic-plastic spheres, Powder Tech. 99, 154 (1998).

    Article  Google Scholar 

  32. C. Cattaneo, Sul contatto di due corpi elastici: Distribuzione locale degli sforzi, Rendiconti dell’Accademia Nazionale dei Lincei 27, 342 (1938).

    MATH  Google Scholar 

  33. R. D. Mindlin, Compliance ofelastic bodies in contact, J. Appl. Mech. 16, 259 (1949).

    Article  MathSciNet  MATH  Google Scholar 

  34. B. Peng, Q. Li, X. Q. Feng, and H. Gao, Effect of shear stress on adhesive contact with a generalized Maugis-Dugdale cohesive zone model, J. Mech. Phys. Solids 148, 104275 (2021).

    Article  MathSciNet  Google Scholar 

  35. A. E. H. Love, A Treatise on the Mathematical Theory of Elasticity (Cambridge University Press, Cambridge, 1927).

    MATH  Google Scholar 

  36. X. Zhou, L. Jing, and X. Ma, Dynamic finite element simulation of wheel-rail contact response for the curved track case, Transport 37, 357 (2022).

    Article  Google Scholar 

  37. J. Y. Kou, X. Zhao, P. Zhang, Z. F. Wen, X. S. Jin, and P. Wang, Estimation of strain rates for wheel-rail surface materials under highspeed rolling-sliding contact (in Chinese), Eng. Mech. 36, 239 (2019).

    Google Scholar 

  38. W. H. Zhang, B. Y. Xue, and X. S. Jin, A single wheelset test on the stand test and verification of wheel-rail creep force calculation model (in Chinese), Rolling Stock 35, 3 (1997).

    Google Scholar 

  39. K. L. Johnson, and J. A. Greenwood, An adhesion map for the contact of elastic spheres, J. Colloid Interface Sci. 192, 326 (1997).

    Article  Google Scholar 

  40. X. Zhao, Z. Wen, M. Zhu, and X. Jin, A study on high-speed rolling contact between a wheel and a contaminated rail, Veh. Syst. Dyn. 52, 1270 (2014).

    Article  Google Scholar 

  41. X. Su, L. Zhou, L. Jing, and H. Wang, Experimental investigation and constitutive description of railway wheel/rail steels under mediumstrain-rate tensile loading, J. Mater. Eng. Perform. 29, 2015 (2020).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 12122211, 11772275, U19A20110, and 51825504), and Research Fund of State Key Laboratory of Traction Power (Grant No. 2019TPL-T11).

Author information

Authors and Affiliations

Authors

Contributions

Lin Jing: Conceptualization, Methodology, Investigation, Writing original draft, Funding acquisition. Xiongfei Zhou: Data curation, Validation, Investigation, Writing review & editing. Kaiyun WangMethodology, Writing review & editing, Supervision, Funding acquisition.

Corresponding author

Correspondence to Kaiyun Wang  (王开云).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jing, L., Zhou, X. & Wang, K. An elastic-plastic theoretical analysis model of wheel-rail rolling contact behaviour. Acta Mech. Sin. 39, 422465 (2023). https://doi.org/10.1007/s10409-023-22465-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10409-023-22465-x

Keywords

Navigation