Skip to main content
Log in

New periodic lattice model with specific vibration absorption patterns at resonant frequencies

共振频率下具有特定振动吸收模式的周期性晶格模型

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

A new three-dimensional periodic lattice is proposed and analyzed in this study. The Adomian decomposition method (ADM) is implemented as an analytical method to calculate the first three complete vibration band gaps of the proposed lattice. Verification of the analytical method and also the calculation of natural frequencies are performed by using the ANSYS software. Results show that a considerable number of natural frequencies are located within the band gaps for all geometries of this structure. The forced harmonic responses at these resonant frequencies show that unlike other periodic structures, the vibration waves with high amplitudes can be concentrated at different areas of the structure rather than just at the excitation points. In other words, specific vibration absorption patterns can be observed at resonance. This lattice can be practically used in cases in which the resonance phenomenon should be limited in a certain area of the structure and also in cases in which the resonance should not occur around the excitation points.

摘要

本文提出并分析了一种新的三维周期性晶格. Adomian分解法(ADM)是一种分析方法, 用于计算所提出的晶格的前三个完整振 动带隙. 使用ANSYS软件对分析方法进行验证以及固有频率的计算. 结果表明, 对于该结构的所有几何形状, 相当数量的固有频率都位 于带隙内. 这些谐振频率下的强制谐波响应表明, 与其他周期性结构不同, 高振幅的振动波可以集中在结构的不同区域, 而不仅仅是在 激励点. 换句话说, 在共振时可以观察到特定的振动吸收模式. 该晶格实际上可用于共振现象应限制在结构的某个区域的情况, 以及共 振不应发生在激励点周围的情况.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. S. Das, K. Dwivedi, S. Geetha Rajasekharan, and Y. V. Daseswara Rao, Vibration attenuation and bandgap characteristics in plates with periodic cavities, J. Vib. Control 27, 827 (2021).

    Article  Google Scholar 

  2. F. Liang, and X. D. Yang, Wave properties and band gap analysis of deploying pipes conveying fluid with periodic varying parameters, Appl. Math. Model. 77, 522 (2020).

    Article  MathSciNet  MATH  Google Scholar 

  3. Y. Y. Chen, and G. L. Huang, Active elastic metamaterials for subwavelength wave propagation control, Acta Mech. Sin. 31, 349 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  4. K. C. Chuang, D. F. Wang, X. Fang, Y. H. Wang, and Z. L. Huang, Applying bandgap defect modes to crack detection in beams using periodic concentrated masses, J. Sound Vib. 477, 115308 (2020).

    Article  Google Scholar 

  5. G. Zhang, and Y. Gao, Tunability of band gaps in two-dimensional phononic crystals with magnetorheological and electrorheological composites, Acta Mech. Solid Sin. 34, 40 (2021).

    Article  Google Scholar 

  6. J. Li, P. Yang, Q. Ma, and M. Xia, Complex band structure and attenuation performance of a viscoelastic phononic crystal with finite out-of-plane extension, Acta Mech. 232, 2933 (2021).

    Article  MathSciNet  MATH  Google Scholar 

  7. M. Hajhosseini, and A. Mahdian Parrany, Study on in-plane band gap characteristics of a circular periodic structure using DQM, Int. J. Appl. Mech. 12, 2050083 (2020).

    Article  Google Scholar 

  8. M. Hajhosseini, and A. Mahdian Parrany, Vibration band gap properties of a periodic beam-like structure using the combination of GDQ and GDQR methods, Waves Random Complex Media 31, 795 (2021).

    Article  MathSciNet  MATH  Google Scholar 

  9. P. Zhao, K. Zhang, and Z. Deng, Size effects on the band gap of flexural wave propagation in one-dimensional periodic micro-beams, Compos. Struct. 271, 114162 (2021).

    Article  Google Scholar 

  10. L. Lu, F. Liu, and J. Wu, Tunable band gaps of axially moving belt on periodic elastic foundation, J. Vib. Control. doi: https://doi.org/10.1177/10775463221083743 (2022).

  11. D. Yu, M. P. Païdoussis, H. Shen, and L. Wang, Dynamic stability of periodic pipes conveying fluid, J. Appl. Mech. 81, 011008 (2014).

    Article  Google Scholar 

  12. H. Yu, F. Liang, Y. Qian, J. Gong, Y. Chen, and A. Gao, Phononic band gap and free vibration analysis of fluid-conveying pipes with periodically varying cross-section, Appl. Sci. 11, 10485 (2021).

    Article  Google Scholar 

  13. Z. Wu, F. Li, and C. Zhang, Band-gap analysis of a novel lattice with a hierarchical periodicity using the spectral element method, J. Sound Vib. 421, 246 (2018).

    Article  Google Scholar 

  14. Muhammad, C. W. Lim, J. T. H. Li, and Z. Zhao, Lightweight architected lattice phononic crystals with broadband and multiband vibration mitigation characteristics, Extreme Mech. Lett. 41, 100994 (2020).

    Article  Google Scholar 

  15. M. Hajhosseini, Analysis of complete vibration bandgaps in a new periodic lattice model using the differential quadrature method, J. Vib. Control 26, 1708 (2020).

    Article  MathSciNet  Google Scholar 

  16. Z. Cheng, Z. Shi, A. Palermo, H. Xiang, W. Guo, and A. Marzani, Seismic vibrations attenuation via damped layered periodic foundations, Eng. Struct. 211, 110427 (2020).

    Article  Google Scholar 

  17. P. Zhou, S. Wan, X. Wang, Y. Zhu, and M. Huang, A periodic seismic isolation foundation with an extremely broad low-frequency attenuation zone: Theoretical analysis and experimental verification, Adv. Struct. Eng. 25, 625 (2022).

    Article  Google Scholar 

  18. F. Sun, L. Xiao, and O. S. Bursi, Optimal design and novel configuration of a locally resonant periodic foundation (LRPF) for seismic protection of fuel storage tanks, Eng. Struct. 189, 147 (2019).

    Article  Google Scholar 

  19. T. Ren, F. Li, Y. Chen, C. Liu, and C. Zhang, Improvement of the band-gap characteristics of active composite laminate metamaterial plates, Compos. Struct. 254, 112831 (2020).

    Article  Google Scholar 

  20. K. Yi, M. Ouisse, E. Sadoulet-Reboul, and G. Matten, Active meta-materials with broadband controllable stiffness for tunable band gaps and non-reciprocal wave propagation, Smart Mater. Struct. 28, 065025 (2019).

    Article  Google Scholar 

  21. P. Zhao, L. Yuan, T. Ma, and H. Wei, Study on tunable band gap of flexural vibration in a phononic crystals beam with PBT, Crystals 11, 1346 (2021).

    Article  Google Scholar 

  22. C. Wang, X. Yao, G. Wu, and L. Tang, Complete vibration band gap characteristics of two-dimensional periodic grid structures, Compos. Struct. 274, 114368 (2021).

    Article  Google Scholar 

  23. L. Ding, Z. Ye, and Q. Y. Wu, Flexural vibration band gaps in periodic Timoshenko beams with oscillators in series resting on flexible supports, Adv. Struct. Eng. 23, 3117 (2020).

    Article  Google Scholar 

  24. L. J. Wu, and H. W. Song, Band gap analysis of periodic structures based on cell experimental frequency response functions (FRFs), Acta Mech. Sin. 35, 156 (2019).

    Article  MathSciNet  Google Scholar 

  25. M. Hajhosseini, and A. Mahdian Parrany, A new periodic beam-like structure with special vibration-isolation characteristics, Mech. Adv. Mater. Struct. 29, 3804 (2022).

    Article  MATH  Google Scholar 

  26. W. Que, X. Yang, and W. Zhang, Tunable low frequency band gaps and sound transmission loss of a lever-type metamaterial plate, Appl. Math. Mech.-Engl. Ed. 43, 1145 (2022).

    Article  MathSciNet  MATH  Google Scholar 

  27. L. Yao, G. Huang, H. Chen, and M. V. Barnhart, A modified smoothed finite element method (M-SFEM) for analyzing the band gap in phononic crystals, Acta Mech. 230, 2279 (2019).

    Article  MathSciNet  Google Scholar 

  28. C. W. Zhou, J. P. Lainé, M. N. Ichchou, and A. M. Zine, Wave finite element method based on reduced model for one-dimensional periodic structures, Int. J. Appl. Mech. 07, 1550018 (2015).

    Article  Google Scholar 

  29. A. W. Leissa, and M. S. Qatu, Vibration of Continuous Systems, 1st edi. (McGraw-Hill Professional, New York, 2011).

    Google Scholar 

  30. C. Kittel, Introduction to Solid State Physics, 8th edi. (John Wiley & Son, New York, 2005).

    MATH  Google Scholar 

  31. G. Adomian, Solving Frontier Problems of Physics: The Decomposition Method, 1st ed. (Kluwer-Academic Publishers, Boston, 1994).

    Book  MATH  Google Scholar 

  32. A. Keshmiri, N. Wu, and Q. Wang, Vibration analysis of non-uniform tapered beams with nonlinear FGM properties, J. Mech. Sci. Technol. 32, 5325 (2018).

    Article  Google Scholar 

  33. R. Tabassian, Torsional vibration analysis of shafts based on Adomian decomposition method, Appl. Comput. Mech. 7, 205 (2013).

    Google Scholar 

  34. Z. H. He, Y. Z. Wang, and Y. S. Wang, Active feedback control of sound radiation in elastic wave metamaterials immersed in water with fluid-solid coupling, Acta Mech. Sin. 37, 803 (2021).

    Article  MathSciNet  Google Scholar 

  35. B. Xia, Z. Jiang, L. Tong, S. Zheng, and X. Man, Topological bound states in elastic phononic plates induced by disclinations, Acta Mech. Sin. 38, 521459 (2022).

    Article  MathSciNet  Google Scholar 

  36. K. Liang, J. He, Z. Jia, and X. Zhang, Topology optimization of magnetorheological smart materials included PnCs for tunable wide bandgap design, Acta Mech. Sin. 38, 421525 (2022).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Mohammad Hajhosseini contributed to conceptualization, project administration, resources, supervision, methodology, validation, writing review and editing. Zeinab Zeinalizadeh contributed to data curation, investigation, formal analysis, software, visualization, and writing original draft preparation.

Corresponding author

Correspondence to Mohammad Hajhosseini.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hajhosseini, M., Zeinalizadeh, Z. New periodic lattice model with specific vibration absorption patterns at resonant frequencies. Acta Mech. Sin. 39, 522463 (2023). https://doi.org/10.1007/s10409-023-22463-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10409-023-22463-x

Keywords

Navigation