Skip to main content
Log in

Theoretical modeling of trail formation of a migrating neutrophil on substrate

中性粒细胞在基底上迁移过程中曳尾形成的理论模型

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

Neutrophils undergo fast migration dynamics onto endothelium or extracellular matrix using anterior protrusion together with posterior contraction and retraction. While these migrating cells tend to leave behind the long-lasting membranous trails with enriched integrins ripped down from cell body, it is still unclear how the trail formation is quantitatively correlated with cell migration and what the regulating factors are key in this process. Here a multi-layered mechanochemical model was integrated with a motor-clutch model to simulate numerically the chemotactic migration of a neutrophil on the substrate. Results indicated that, in response to those polarized distributions of sensing molecule P21-activated kinase 1 (PAK1) and the downstream molecules Ras-related C3 botulinum toxin substrate (Rac) and Ras homolog family member (RhoA), membrane-bound integrins tend to be accumulated at both the cell front and rear, promoting the increase of migrating velocity and trail number with time when actin-related protein2/3 complex (Arp2/3) and myosin are respectively accumulated at the front and rear. These predictions were in agreement with those typical experimental observations in integrin polarization and trail formation. Parametric analysis further proposed that, while the migrating velocity yields a biphasic dependence on substrate hardness and motor unloaded velocity, trail number increases monotonically with substrate hardness, on-rate of integrin-ligand bonds, motor unloaded velocity, motor stall force, and clutch number but decreases with chemokine concentration and off-rate of integrin-ligand bonds. This work provided an insight in elaborating the mechanochemical pathways in neutrophil migration and deciphering the key extracellular or intracellular factors in regulating the relevant trail formation of those migrating neutrophils.

摘要

中性粒细胞通过头部前伸和尾部收缩可以在内皮细胞或细胞外基质上快速迁移. 这些细胞在迁移的过程中会遗留下大量富含 整合素的膜结构, 但目前尚不清楚曳尾的形成与细胞迁移之间的定量关系以及在这一过程中起关键作用的调控因素. 本文将多层级力 学-化学耦合模型与细胞迁移的马达-离合器模型相结合, 对中性粒细胞在基质上的趋化迁移进行了数值模拟. 结果表明, 随着PAK1和 其下游信号分子Rac和RhoA的极化分布, 细胞膜上的整合素倾向于在细胞前后两端产生极化积聚, 当Arp2/3和myosin分别在细胞的头 尾极化时, 细胞会在整合素的作用下增大迁移速度并提高曳尾的数量. 这些关于整合素极化以及曳尾形成的预测与典型的实验结果一 致. 参数分析进一步表明, 虽然细胞迁移速度与基底硬度和“马达”空载速度呈现双相依赖关系, 但是曳尾形成的数量随着基底硬度、整 合素-配体分子键的结合率、“马达”空载速度、“马达”空载拉力和“离合器”数量的增加而单调增加, 随着趋化因子浓度和整合素-配体 分子键的解离率的增加而减少. 上述工作为阐明中性粒细胞迁移的力学-化学-生物学耦合过程和探究调节中性粒细胞迁移过程中影响 曳尾形成的关键因素提供了一种解释.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. C. Summers, S. M. Rankin, A. M. Condliffe, N. Singh, A. M. Peters, and E. R. Chilvers, Neutrophil kinetics in health and disease, Trends Immunol. 31, 318 (2010).

    Article  Google Scholar 

  2. A. Mantovani, M. A. Cassatella, C. Costantini, and S. Jaillon, Neutrophils in the activation and regulation of innate and adaptive immunity, Nat. Rev. Immunol. 11, 519 (2011).

    Article  Google Scholar 

  3. C. Nathan, Neutrophils and immunity: Challenges and opportunities, Nat. Rev. Immunol. 6, 173 (2006).

    Article  Google Scholar 

  4. E. M. Gardiner, K. N. Pestonjamasp, B. P. Bohl, C. Chamberlain, K. M. Hahn, and G. M. Bokoch, Spatial and temporal analysis of Rac activation during live neutrophil chemotaxis, Curr. Biol. 12, 2029 (2002).

    Article  Google Scholar 

  5. C. A. Parent, Making all the right moves: Chemotaxis in neutrophils and Dictyostelium, Curr. Opin. Cell Biol. 16, 4 (2004).

    Article  Google Scholar 

  6. K. Lim, Y. M. Hyun, K. Lambert-Emo, T. Capece, S. Bae, R. Miller, D. J. Topham, and M. Kim, Neutrophil trails guide influenza-specific CD8+ T cells in the airways, Science 349, 11 (2015).

    Article  Google Scholar 

  7. J. A. Broussard, D. J. Webb, and I. Kaverina, Asymmetric focal adhesion disassembly in motile cells, Curr. Opin. Cell Biol. 20, 85 (2008).

    Article  Google Scholar 

  8. B. H. Ji, and B. Huo, Probing the mechanosensitivity in cell adhesion and migration: Experiments and modeling, Acta Mech. Sin. 29, 469 (2013).

    Article  Google Scholar 

  9. S. L. Gupton, and C. M. Waterman-Storer, Spatiotemporal feedback between actomyosin and focal-adhesion systems optimizes rapid cell migration, Cell 125, 1361 (2006).

    Article  Google Scholar 

  10. L. B. Case, and C. M. Waterman, Integration of actin dynamics and cell adhesion by a three-dimensional, mechanosensitive molecular clutch, Nat. Cell. Biol. 17, 955 (2015).

    Article  Google Scholar 

  11. G. Salbreux, G. Charras, and E. Paluch, Actin cortex mechanics and cellular morphogenesis, Trends Cell Biol. 22, 536 (2012).

    Article  Google Scholar 

  12. D. L. Bodor, W. Pönisch, R. G. Endres, and E. K. Paluch, Of cell shapes and motion: The physical basis of animal cell migration, Dev. Cell 52, 550 (2020).

    Article  Google Scholar 

  13. N. Li, D. Mao, S. Lü, C. Tong, Y. Zhang, and M. Long, Distinct binding affinities of Mac-1 and LFA-1 in neutrophil activation, J. Immunol. 190, 4371 (2013).

    Article  Google Scholar 

  14. S. He, X. Li, and B. Ji, Mechanical force drives the polarization and orientation of cells, Acta Mech. Sin. 35, 275 (2019).

    Article  Google Scholar 

  15. R. O. Hynes, Integrins: Versatility, modulation, and signaling in cell adhesion, Cell 69, 11 (1992).

    Article  Google Scholar 

  16. B. L. Bangasser, S. S. Rosenfeld, and D. J. Odde, Determinants of maximal force transmission in a motor-clutch model of cell traction in a compliant microenvironment, Biophys. J. 105, 581 (2013).

    Article  Google Scholar 

  17. N. Li, S. Lü, Y. Zhang, and M. Long, Mechanokinetics of receptor–ligand interactions in cell adhesion, Acta Mech. Sin. 31, 248 (2015).

    Article  Google Scholar 

  18. J. Wei, X. Chen, and B. Chen, Harnessing structural instability for cell durotaxis, Acta Mech. Sin. 35, 355 (2019).

    Article  Google Scholar 

  19. C. E. Chan, and D. J. Odde, Traction dynamics of filopodia on compliant substrates, Science 322, 1687 (2008).

    Article  Google Scholar 

  20. C. G. Gahmberg, Leukocyte adhesion: CD11/CD18 integrins and intercellular adhesion molecules, Curr. Opin. Cell Biol. 9, 643 (1997).

    Article  Google Scholar 

  21. K. Ley, C. Laudanna, M. I. Cybulsky, and S. Nourshargh, Getting to the site of inflammation: The leukocyte adhesion cascade updated, Nat. Rev. Immunol. 7, 678 (2007).

    Article  Google Scholar 

  22. T. Yago, B. Shao, J. J. Miner, L. Yao, A. G. Klopocki, K. Maeda, K. M. Coggeshall, and R. P. McEver, E-selectin engages PSGL-1 and CD44 through a common signaling pathway to induce integrin αLβ2-mediated slow leukocyte rolling, Blood 116, 485 (2010).

    Article  Google Scholar 

  23. S. Nourshargh, and R. Alon, Leukocyte migration into inflamed tissues, Immunity 41, 694 (2014).

    Article  Google Scholar 

  24. Y. Gong, Y. Zhang, S. Feng, X. Liu, S. Lü, and M. Long, Dynamic contributions of P- and E-selectins to β2-integrin-induced neutrophil transmigration, FASEB J. 31, 212 (2017).

    Article  Google Scholar 

  25. T. Lämmermann, and M. Sixt, Mechanical modes of ‘amoeboid’ cell migration, Curr. Opin. Cell Biol. 21, 636 (2009).

    Article  Google Scholar 

  26. S. Feng, L. Zhou, Y. Zhang, S. Lü, and M. Long, Mechanochemical modeling of neutrophil migration based on four signaling layers, integrin dynamics, and substrate stiffness, Biomech. Model. Mechanobiol. 17, 1611 (2018).

    Article  Google Scholar 

  27. E. Ghabache, Y. Cao, Y. Miao, A. Groisman, P. N. Devreotes, and W. Rappel, Coupling traction force patterns and actomyosin wave dynamics reveals mechanics of cell motion, Mol. Syst. Biol. 17, 21 (2021).

    Article  Google Scholar 

  28. S. P. Palecek, A. F. Horwitz, and D. A. Lauffenburger, Kinetic model for integrin-mediated adhesion release during cell migration, Ann. Biomed. Eng. 27, 219 (1999).

    Article  Google Scholar 

  29. A. Macdonald, A. R. Horwitz, and D. A. Lauffenburger, Kinetic model for lamellipodal actin-integrin ‘clutch’ dynamics, Cell Adhes. Migration 2, 95 (2008).

    Article  Google Scholar 

  30. R. Oria, T. Wiegand, J. Escribano, A. Elosegui-Artola, J. J. Uriarte, C. Moreno-Pulido, I. Platzman, P. Delcanale, L. Albertazzi, D. Navajas, X. Trepat, J. M. García-Aznar, E. A. Cavalcanti-Adam, and P. Roca-Cusachs, Force loading explains spatial sensing of ligands by cells, Nature 552, 219 (2017).

    Article  Google Scholar 

  31. A. F. M. Marée, A. Jilkine, A. Dawes, V. A. Grieneisen, and L. Edelstein-Keshet, Polarization and movement of keratocytes: A multiscale modelling approach, Bull. Math. Biol. 68, 1169 (2006).

    Article  MATH  Google Scholar 

  32. J. Xu, X. L. Wang, Y. Q. Liu, and X. B. Gong, A cellular scale numerical study of the effect of mechanical properties of erythrocytes on the near-wall motion of platelets, Acta Mech. Sin. 30, 274 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  33. S. L. Feng, L. W. Zhou, S. Q. Lü, and Y. Zhang, Dynamic seesaw model for rapid signaling responses in eukaryotic chemotaxis, Phys. Biol. 15, 056004 (2018).

    Article  Google Scholar 

  34. L. Zhou, S. Feng, L. Li, S. Lü, Y. Zhang, and M. Long, Two complementary signaling pathways depict eukaryotic chemotaxis: A mechanochemical coupling model, Front. Cell Dev. Biol. 9, 12 (2021).

    Article  Google Scholar 

  35. S. Chen, J. Zhu, J. Xue, X. Wang, P. Jing, L. Zhou, Y. Cui, T. Wang, X. Gong, S. Lü, and M. Long, Numerical simulation of flow characteristics in a permeable liver sinusoid with leukocytes, Biophys. J. 121, 4666 (2022).

    Article  Google Scholar 

  36. L. Gambardella, and S. Vermeren, Molecular players in neutrophil chemotaxis—focus on PI3K and small GTPases, J. Leukocyte Biol. 94, 603 (2013).

    Article  Google Scholar 

  37. V. Andasari, D. Lü, M. Swat, S. Feng, F. Spill, L. Chen, X. Luo, M. Zaman, and M. Long, Computational model of wound healing: EGF secreted by fibroblasts promotes delayed re-epithelialization of epithelial keratinocytes, Integr. Biol. 10, 605 (2018).

    Article  Google Scholar 

  38. J. Lin, Y. Wang, and J. Qian, Effects of domain unfolding and catchlike dissociation on the collective behavior of integrin-fibronectin bond clusters, Acta Mech. Sin. 37, 229 (2021).

    Article  MathSciNet  Google Scholar 

  39. Y. Zhong, and B. Ji, Impact of cell shape on cell migration behavior on elastic substrate, Biofabrication 5, 015011 (2013).

    Article  Google Scholar 

  40. Z. Liu, L. A. van Grunsven, E. Van Rossen, B. Schroyen, J. P. Timmermans, A. Geerts, and H. Reynaert, Blebbistatin inhibits contraction and accelerates migration in mouse hepatic stellate cells, Br. J. Pharmacol. 159, 304 (2010).

    Article  Google Scholar 

  41. R. Sridharan, B. Cavanagh, A. R. Cameron, D. J. Kelly, and F. J. O’Brien, Material stiffness influences the polarization state, function and migration mode of macrophages, Acta Biomater. 89, 47 (2019).

    Article  Google Scholar 

  42. R. Sridharan, D. J. Kelly, and F. J. O’Brien, Substrate stiffness modulates the crosstalk between mesenchymal stem cells and macrophages, J. Biomech. Eng. 143, 031001 (2021).

    Article  Google Scholar 

  43. K. Tao, J. Wang, X. Kuang, W. Wang, F. Liu, and L. Zhang, Tuning cell motility via cell tension with a mechanochemical cell migration model, Biophys. J. 118, 2894 (2020).

    Article  Google Scholar 

  44. S. H. Li, H. Gao, and G. K. Xu, Network dynamics of the nonlinear power-law relaxation of cell cortex, Biophys. J. 121, 4091 (2022).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 31627804, 11772345, and 91539119), the Scientific Instrument Developing Project of the Chinese Academy of Sciences (Grant No. GJJSTU20220002), and Frontier Science Key Project of Chinese Science Academy (Grant No. QYZDJ-SSW-JSC018).

Author information

Authors and Affiliations

Authors

Contributions

Xiaoning Zhang, Yan Zhang, and Mian Long developed the concept, designed the simulations, analyzed the data, wrote the paper, revised and edited the final version. Xiaoning Zhang developed mathematical model and conducted numerical simulations. Wenhui Hu and Wenbo Gao performed experiments.

Corresponding authors

Correspondence to Yan Zhang  (章燕) or Mian Long  (龙勉).

Supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Hu, W., Gao, W. et al. Theoretical modeling of trail formation of a migrating neutrophil on substrate. Acta Mech. Sin. 39, 622461 (2023). https://doi.org/10.1007/s10409-023-22461-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10409-023-22461-x

Keywords

Navigation