Skip to main content
Log in

Application of physics-informed neural networks for nonlinear buckling analysis of beams

基于物理信息的神经网络方法在梁非线性屈曲分析中的应用

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

This paper proposes a physics-informed neural network (PINN) framework to analyze the nonlinear buckling behavior of a three-dimensional (3D) FG porous, slender beam resting on a Winkler-Pasternak foundation. PINNs need much less training data to obtain high accuracy using a straightforward network. The powerful tool used in this work can handle any class of PDEs. We use the deep learning platform TensorFlow and DeepXDE library to design our network. In this study, the PINNs framework takes information from the governing differential equations of the beam system and the data from boundary conditions and outputs the critical nonlinear buckling load. The mathematical model is developed using Hamilton’s principle, considering geometry’s nonlinearity. The accuracy of the modeling framework is carefully examined by applying it to various boundary condition cases as well as the physical parameters such as 3D FG indexes on the nonlinear mechanical behaviors. Finally, the PINNs results are validated with those extracted from the generalized differential quadrature method (GDQM). It is found that the proposed PINN framework can characterize the nonlinear buckling behavior of 3D FG porous, slender beams with satisfactory accuracy. Furthermore, PINN is presented to accurately predict the nonlinear buckling behavior of the beam up to 71 times faster than the numerical method.

摘要

本文提出了一种基于物理信息的神经网络(PINN)框架来分析在Winkler-Pasternak基础上的三维功能梯度FG多孔细长梁的非线 性屈曲行为. 使用简单的网络, PINNs只需要很少的训练数据来获得较高的精度. 在这项工作中使用的强大工具可以处理任何类型的偏 微分方程. 我们使用深度学习平台TensorFlow和DeepXDE库来设计我们的网络. 在本研究中, PINNs框架从梁系统的控制微分方程和边 界条件中获取信息, 并输出临界非线性屈曲载荷. 利用哈密顿原理, 考虑几何的非线性, 建立了数学模型. 通过将建模框架应用于各种 边界条件情况以及三维功能梯度FG指标等物理参数对非线性力学行为的影响, 仔细检验了建模框架的准确性. 最后, 利用广义微分求 积法(GDQM)对PINNs结果进行了验证. 研究结果表明, 所提出的PINN框架能够较好地表征三维功能梯度FG多孔细长梁的非线性屈曲 行为. 此外, PINN预测梁的非线性屈曲行为的速度比数值方法快71倍.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. X. Liu, Economic load dispatch constrained by wind power availability: A wait-and-see approach, IEEE Trans. Smart Grid 1, 347 (2010).

    Article  Google Scholar 

  2. M. R. Rajashekhar, and B. R. Ellingwood, A new look at the response surface approach for reliability analysis, Struct. Saf. 12, 205 (1993).

    Article  Google Scholar 

  3. J. L. Green, and J. B. Plotkin, A statistical theory for sampling species abundances, Ecol Lett. 10, 1037 (2007).

    Article  Google Scholar 

  4. A. Ahmadian, A. Shafiee, N. Aliahmad, and M. Agarwal, Overview of nano-fiber mats fabrication via electrospinning and morphology analysis, Textiles 1, 206 (2021).

    Article  Google Scholar 

  5. J. N. Reddy, Introduction to the Finite Element Method (McGraw-Hill Education, Los Angeles, 2019).

    Google Scholar 

  6. S. Godunov, and I. Bohachevsky, Finite difference method for numerical computation of discontinuous solutions of the equations of fluid dynamics, Matematičeskij sbornik 47, 271 (1959).

    Google Scholar 

  7. M. M. Chawla, and C. P. Katti, Finite difference methods and their convergence for a class of singular two point boundary value problems, Numer. Math. 39, 341 (1982).

    Article  MathSciNet  MATH  Google Scholar 

  8. T. Pin, and T. H. H. Pian, On the convergence of the finite element method for problems with singularity, Int. J. Solids Struct. 9, 313 (1973).

    Article  MATH  Google Scholar 

  9. A. Moghanizadeh, F. Ashrafizadeh, and M. Bazmara, Development the flexible magnetic abrasive finishing process by transmitting the magnetic fields, Int. J. Adv. Manuf. Technol. 119, 2115 (2022).

    Article  Google Scholar 

  10. S. M. J. Hosseini, J. Torabi, R. Ansari, and A. Zabihi, Geometrically nonlinear electromechanical instability of fg nanobeams by nonlocal strain gradient theory, Int. J. Str. Stab. Dyn. 21, 2150051 (2021).

    Article  MathSciNet  Google Scholar 

  11. H. Salehipour, H. Nahvi, A. R. Shahidi, and H. R. Mirdamadi, 3D elasticity analytical solution for bending of FG micro/nanoplates resting on elastic foundation using modified couple stress theory, Appl. Math. Model. 47, 174 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  12. M. Mianroodi, S. Touchal, and G. Altmeyer, in numerical prediction of forming limit diagrams using Marciniak-Kuczynski instabilities criteria and texture evaluation of roll forming process: Proceedings of International Conference on Interdisciplinary Studies in Science and Engineering, 2017.

  13. S. Cai, Z. Mao, Z. Wang, M. Yin, and G. E. Karniadakis, Physics-informed neural networks (PINNs) for fluid mechanics: A review, Acta Mech. Sin. 37, 1727 (2021).

    Article  MathSciNet  Google Scholar 

  14. S. Zarei Darani, and R. Naghdabadi, An experimental study on multiwalled carbon nanotube nanocomposite piezoresistivity considering the filler agglomeration effects, Polym. Compos. 42, 4707 (2021).

    Article  Google Scholar 

  15. M. Bazmara, M. Silani, and I. Dayyani, Effect of functionally-graded interphase on the elasto-plastic behavior of nylon-6/clay nanocomposites; a numerical study, Defence Tech. 17, 177 (2021).

    Article  Google Scholar 

  16. B. Azari, K. Hassan, J. Pierce, and S. Ebrahimi, Evaluation of machine learning methods application in temperature prediction, CRPASE: Trans. Civ. Environ. Eng. 8, 1 (2022).

    Article  Google Scholar 

  17. M. Raissi, P. Perdikaris, and G. E. Karniadakis, Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations, J. Comput. Phys. 378, 686 (2019).

    Article  MathSciNet  MATH  Google Scholar 

  18. T. Khatibi, A. Farahani, M. M. Sepehri, and M. Heidarzadeh, Distributed big data analytics method for the early prediction of the neonatal 5-minute Apgar score before or during birth and ranking the risk factors from a national dataset, AI 3, 371 (2022).

    Article  Google Scholar 

  19. X. Zhuang, H. Guo, N. Alajlan, H. Zhu, and T. Rabczuk, Deep autoencoder based energy method for the bending, vibration, and buckling analysis of Kirchhoff plates with transfer learning, Eur. J. Mech.-A Solids 87, 104225 (2021).

    Article  MathSciNet  MATH  Google Scholar 

  20. H. Guo, X. Zhuang, and T. Rabczuk, A deep collocation method for the bending analysis of Kirchhoff plate, Mater. Continua 59, 433 (2019).

    Article  Google Scholar 

  21. E. Samaniego, C. Anitescu, S. Goswami, V. M. Nguyen-Thanh, H. Guo, K. Hamdia, X. Zhuang, and T. Rabczuk, An energy approach to the solution of partial differential equations in computational mechanics via machine learning: Concepts, implementation and applications, Comput. Methods Appl. Mech. Eng. 362, 112790 (2020).

    Article  MathSciNet  MATH  Google Scholar 

  22. M. Mianroodi, G. Altmeyer, and S. Touchal, Experimental and numerical FEM-based determinations of forming limit diagrams of St14 mild steel based on Marciniak-Kuczynski model, JMES 13, 5818 (2019).

    Article  Google Scholar 

  23. F. Trochu, and R. Gauvin, Limitations of a boundary-fitted finite difference method for the simulation of the resin transfer molding process, J. Reinforced Plast. Compos. 11, 772 (1992).

    Article  Google Scholar 

  24. F. Tornabene, A. Marzani, and E. Viola, Critical flow speeds of pipes conveying fluid using the generalized differential quadrature method, Adv. Theor. Appl. Mech. 3, 121 (2010).

    MATH  Google Scholar 

  25. M. Penwarden, S. Zhe, A. Narayan, and R. M. Kirby, Multifidelity modeling for physics-informed neural networks (pinns), J. Comput. Phys. 451, 110844 (2022).

    Article  MathSciNet  MATH  Google Scholar 

  26. T. Łodygowski, and W. Sumelka, Limitations in application of finite element method in acoustic numerical simulation, J. Theor. Appl. Mech. 44, 849 (2006).

    Google Scholar 

  27. L. Lu, X. Meng, Z. Mao, and G. E. Karniadakis, DeepXDE: A deep learning library for solving differential equations, SIAM Rev. 63, 208 (2021).

    Article  MathSciNet  MATH  Google Scholar 

  28. E. Carrera, and M. D. Demirbas, Evaluation of bending and post-buckling behavior of thin-walled FG beams in geometrical nonlinear regime with CUF, Comp. Struct. 275, 114408 (2021).

    Article  Google Scholar 

  29. M. Şimşek, Buckling of Timoshenko beams composed of two-dimensional functionally graded material (2D-FGM) having different boundary conditions, Comp. Struct. 149, 304 (2016).

    Article  Google Scholar 

  30. Y. Zhang, and Y. Liu, The Mexican hat effect on the delamination buckling of a compressed thin film, Acta Mech. Sin. 30, 927 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  31. Y. Tang, G. Wang, T. Ren, Q. Ding, and T. Yang, Nonlinear mechanics of a slender beam composited by three-directional functionally graded materials, Comp. Struct. 270, 114088 (2021).

    Article  Google Scholar 

  32. T. P. Vo, H. T. Thai, T. K. Nguyen, F. Inam, and J. Lee, A quasi-3D theory for vibration and buckling of functionally graded sandwich beams, Comp. Struct. 119, 1 (2015).

    Article  Google Scholar 

  33. D. Chen, J. Yang, and S. Kitipornchai, Elastic buckling and static bending of shear deformable functionally graded porous beam, Comp. Struct. 133, 54 (2015).

    Article  Google Scholar 

  34. H. Tang, L. Li, and Y. Hu, Buckling analysis of two-directionally porous beam, Aerosp. Sci. Tech. 78, 471 (2018).

    Article  Google Scholar 

  35. L. Hadji, An analytical solution for bending and free vibration responses of functionally graded beams with porosities: Effect of the micromechanical models, Struct. Eng. Mech. 69, 231 (2019).

    Google Scholar 

  36. Y. Kumar, The Rayleigh-Ritz method for linear dynamic, static and buckling behavior of beams, shells and plates: A literature review, J. Vib. Control 24, 1205 (2018).

    Article  MathSciNet  MATH  Google Scholar 

  37. S. Singhvi, and R. K. Kapania, Comparison of simple and Chebychev polynomials in Rayleigh-Ritz analysis, J. Eng. Mech. 120, 2126 (1994).

    Article  Google Scholar 

  38. C. S. Huang, and A. W. Leissa, Vibration analysis of rectangular plates with side cracks via the Ritz method, J. Sound Vib. 323, 974 (2009).

    Article  Google Scholar 

  39. B. Huang, and J. Wang, Applications of physics-informed neural networks in power systems—a review, IEEE Trans. Power Syst. 38, 572 (2023).

    Article  Google Scholar 

  40. A. Griewank, On Automatic Differentiation, Mathematical Programming: Recent Developments and Applications, 6, 83 (Springer, 1989).

    MathSciNet  MATH  Google Scholar 

  41. D. C. Psichogios, and L. H. Ungar, A hybrid neural network-first principles approach to process modeling, AIChE J. 38, 1499 (1992).

    Article  Google Scholar 

  42. I. E. Lagaris, A. Likas, and D. I. Fotiadis, Artificial neural networks for solving ordinary and partial differential equations, IEEE Trans. Neural Netw. 9, 987 (1998).

    Article  Google Scholar 

  43. G. Pang, L. Lu, and G. E. Karniadakis, fPINNs: Fractional physics-informed neural networks, SIAM J. Sci. Comput. 41, A2603 (2019).

    Article  MathSciNet  MATH  Google Scholar 

  44. I. Vasilev, D. Slater, G. Spacagna, P. Roelants, and V. Zocca, Python Deep Learning: Exploring Deep Learning Techniques and Neural Network Architectures with PyTorch, Keras, and TensorFlow (Packt Publishing Ltd., Birmingham, 2019).

    Google Scholar 

  45. W. E, and B. Yu, The deep Ritz method: a deep learning-based numerical algorithm for solving variational problems, Commun. Math. Stat. 6, 1 (2018).

    Article  MathSciNet  MATH  Google Scholar 

  46. E. Cerda, K. Ravi-Chandar, and L. Mahadevan, Wrinkling of an elastic sheet under tension, Nature 419, 579 (2002).

    Article  Google Scholar 

  47. H. Bufler, The principle of virtual displacements and the principle of virtual forces in the case of large deformations, Acta Mech. 53, 15 (1984).

    Article  MathSciNet  MATH  Google Scholar 

  48. Abadi, M., et al. in TensorFlow: A system for large-scale machine learning: Proceedings of 12th USENIX symposium on operating systems design and implementation (OSDI 16) (2016), doi: 10.48550/arXiv.1605.08695.

  49. A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A. Desmaison, L. Antiga, and A. Lerer, in Automatic differentiation in PyTorch: Proceedings of 31st Conference on Neural Information Processing Systems, Long Beach, 2017.

  50. A. D. Jagtap, K. Kawaguchi, and G. E. Karniadakis, Adaptive activation functions accelerate convergence in deep and physics-informed neural networks, J. Comput. Phys. 404, 109136 (2020).

    Article  MathSciNet  MATH  Google Scholar 

  51. D. P. Kingma, and J. Ba, Adam: A method for stochastic optimization, arXiv: 1412.6980.

  52. L. Lu, Simulation physics-informed deep neural network by adaptive Adam optimization method to perform a comparative study of the system, Eng. Comput. 38, 1111 (2022).

    Article  Google Scholar 

  53. H. Du, K. M. Liew, and M. K. Lim, Generalized differential quadrature method for buckling analysis, J. Eng. Mech. 122, 95 (1996).

    Article  Google Scholar 

  54. Y. Chen, X. Shi, Z. Zhao, Z. Guo, and Y. Li, A thermo-viscoelastic model for particle-reinforced composites based on micromechanical modeling, Acta Mech. Sin. 37, 402 (2021).

    Article  MathSciNet  Google Scholar 

  55. Y. Zhang, X. Yang, and C. Xiong, Mechanical characterization of soft silicone gels via spherical nanoindentation for applications in mechanobiology, Acta Mech. Sin. 37, 554 (2021).

    Article  Google Scholar 

  56. Y. Li, J. Li, Q. Duan, H. Xie, and S. Liu, Characterization of material mechanical properties using strain correlation method combined with virtual fields method, Acta Mech. Sin. 37, 456 (2021).

    Article  MathSciNet  Google Scholar 

  57. O. T. Bruhns, Large deformation plasticity, Acta Mech. Sin. 36, 472 (2020).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge Dr. Majid Baniassadi for scientific discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Mianroodi.

Additional information

Executive Editor: Xiaoding Wei

Author contributions

Maziyar Bazmara and Mohammad Mianroodi developed the method, implemented the computer code, and performed computations. Maziyar Bazmara and Mohammad Mianroodi analyzed data. Maziyar Bazmara and Mohammad Mianroodi wrote the paper. Maziyar Bazmara, Mohammad Mianroodi, and Mohammad Silani conceived the project. Mohammad Silani supervised the project.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bazmara, M., Mianroodi, M. & Silani, M. Application of physics-informed neural networks for nonlinear buckling analysis of beams. Acta Mech. Sin. 39, 422438 (2023). https://doi.org/10.1007/s10409-023-22438-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10409-023-22438-x

Keywords

Navigation