Skip to main content
Log in

A subdomain-based parallel strategy for structural topology optimization

基于子区域的结构拓扑优化并行策略

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

Structural topology optimization has undergone tremendous developments in the past three decades. Making the most of high-performance computing resources contributes to broadening the application of topology optimization in large-scale design problems. In this paper, a subdomain-based parallel strategy is proposed for general three-dimensional topology optimization. The optimization process is significantly accelerated through subdomain division, matrix calculation, and hard-kill algorithm. This strategy is integrated into an efficient and compact Python code, which is valid for design space with an arbitrary shape. The complete code, given in Appendix 1, can be easily extended to tackle different kinds of optimization problems. Four compliance minimization problems are taken as examples to demonstrate the efficiency of the proposed strategy. This work has potential applications in areas such as mechanical engineering, advanced manufacturing, and architectural design.

摘要

结构拓扑优化在过去的三十年里经历了巨大的发展. 充分利用高性能计算资源有助于拓宽拓扑优化在大规模设计问题中的应 用. 本文提出了一种针对一般三维拓扑优化的基于子区域的并行策略. 通过子区域划分、矩阵运算、引入单元硬杀算法, 优化过程得 以显著提速. 将该策略整合进高效、简洁的Python代码; 该代码可适用于任意形状的设计域. 附录一中给出的完整代码, 易于扩展, 扩展 后可解决多类优化问题. 通过求解四个柔度最小化问题展示了该策略的高效性. 本研究在机械工程、先进制造, 以及建筑设计等领域 有潜在的应用价值.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. L. Meng, W. Zhang, D. Quan, G. Shi, L. Tang, Y. Hou, P. Breitkopf, J. Zhu, and T. Gao, From topology optimization design to additive manufacturing: Today’s success and tomorrow’s roadmap, Arch. Computat. Methods Eng. 27, 805 (2020).

    Article  Google Scholar 

  2. M. P. Bendsøe, Optimal shape design as a material distribution problem, Struct. Optim. 1, 193 (1989).

    Article  Google Scholar 

  3. M. Zhou, and G. I. N. Rozvany, The COC algorithm, Part II: Topological, geometrical and generalized shape optimization, Comput. Methods Appl. Mech. Eng. 89, 309 (1991).

    Article  Google Scholar 

  4. O. Sigmund, and K. Maute, Topology optimization approaches, Struct. Multidisc. Optim. 48, 1031 (2013).

    Article  MathSciNet  Google Scholar 

  5. X. Huang, and Y. M. Xie, Evolutionary Topology Optimization of Continuum Structures: Methods and Applications (John Wiley & Sons, Chichester, 2010).

    Book  MATH  Google Scholar 

  6. Y. M. Xie, and G. P. Steven, A simple evolutionary procedure for structural optimization, Comput. Struct. 49, 885 (1993).

    Article  Google Scholar 

  7. G. Allaire, F. Jouve, and A. M. Toader, A level-set method for shape optimization, Comptes Rendus Mathematique 334, 1125 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  8. M. Otomori, T. Yamada, K. Izui, and S. Nishiwaki, Matlab code for a level set-based topology optimization method using a reaction diffusion equation, Struct, Multidisc, Optim, 51, 1159 (2015).

    Article  MathSciNet  Google Scholar 

  9. M. Y. Wang, X. Wang, and D. Guo, A level set method for structural topology optimization, Comput. Methods Appl. Mech. Eng. 192, 227 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  10. X. Guo, W. Zhang, and W. Zhong, Doing topology optimization explicitly and geometrically—a new moving morphable components based framework, J. Appl. Mech. 81, 081009 (2014).

    Article  Google Scholar 

  11. X. Guo, W. Zhang, J. Zhang, and J. Yuan, Explicit structural topology optimization based on moving morphable components (MMC) with curved skeletons, Comput. Methods Appl. Mech. Eng. 310, 711 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  12. A. L. R. Prathyusha, and G. Raghu Babu, A review on additive manufacturing and topology optimization process for weight reduction studies in various industrial applications, Mater. Today-Proc. 62, 109 (2022).

    Article  Google Scholar 

  13. Y. Rong, Z. L. Zhao, X. Q. Feng, and Y. M. Xie, Structural topology optimization with an adaptive design domain, Comput. Methods Appl. Mech. Eng. 389, 114382 (2022).

    Article  MathSciNet  MATH  Google Scholar 

  14. X. Wang, S. Wan, P. Zhou, L. Zhou, and Y. Zhu, Topology optimization of periodic pile barriers and its application in vibration reduction for plane waves, Soil Dyn. Earthquake Eng. 153, 107119 (2022).

    Article  Google Scholar 

  15. J. H. Zhu, W. H. Zhang, and L. Xia, Topology optimization in aircraft and aerospace structures design, Arch. Computat. Methods Eng. 23, 595 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  16. X. Guo, and G. D. Cheng, Recent development in structural design and optimization, Acta Mech. Sin. 26, 807 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  17. Y. He, Z. L. Zhao, K. Cai, J. Kirby, Y. Xiong, and Y. M. Xie, A thinning algorithm based approach to controlling structural complexity in topology optimization, Finite Elem. Anal. Des. 207, 103779 (2022).

    Article  MathSciNet  Google Scholar 

  18. A. Chen, K. Cai, Z. L. Zhao, Y. Zhou, L. Xia, and Y. M. Xie, Controlling the maximum first principal stress in topology optimization, Struct. Multidisc. Optim. 63, 327 (2021).

    Article  Google Scholar 

  19. T. Borrvall, and J. Petersson, Large-scale topology optimization in 3D using parallel computing, Comput. Methods Appl. Mech. Eng. 190, 6201 (2001).

    Article  MATH  Google Scholar 

  20. H. Liu, Y. Tian, H. Zong, Q. Ma, M. Y. Wang, and L. Zhang, Fully parallel level set method for large-scale structural topology optimization, Comput. Struct. 221, 13 (2019).

    Article  Google Scholar 

  21. S. Kambampati, C. Jauregui, K. Museth, and H. A. Kim, Large-scale level set topology optimization for elasticity and heat conduction, Struct. Multidisc. Optim. 61, 19 (2020).

    Article  MathSciNet  Google Scholar 

  22. N. Aage, and B. S. Lazarov, Parallel framework for topology optimization using the method of moving asymptotes, Struct. Multi-disc. Optim. 47, 493 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  23. N. Aage, E. Andreassen, and B. S. Lazarov, Topology optimization using PETSc: An easy-to-use, fully parallel, open source topology optimization framework, Struct. Multidisc. Optim. 51, 565 (2015).

    Article  MathSciNet  Google Scholar 

  24. N. Aage, E. Andreassen, B. S. Lazarov, and O. Sigmund, Giga-voxel computational morphogenesis for structural design, Nature 550, 84 (2017).

    Article  Google Scholar 

  25. V. J. Challis, A. P. Roberts, and J. F. Grotowski, High resolution topology optimization using graphics processing units (GPUs), Struct. Multidisc. Optim. 49, 315 (2014).

    Article  Google Scholar 

  26. L. S. Duarte, W. Celes, A. Pereira, I. F. M. Menezes, and G. H. Paulino, PolyTop++: An efficient alternative for serial and parallel topology optimization on CPUs & GPUs, Struct. Multidisc. Optim. 52, 845 (2015).

    Article  MathSciNet  Google Scholar 

  27. Z. Xia, Y. Wang, Q. Wang, and C. Mei, GPU parallel strategy for parameterized LSM-based topology optimization using isogeometric analysis, Struct. Multidisc. Optim. 56, 413 (2017).

    Article  MathSciNet  Google Scholar 

  28. O. Sigmund, A 99 line topology optimization code written in Matlab, Struct. Multidisc. Optim. 21, 120 (2001).

    Article  Google Scholar 

  29. E. Andreassen, A. Clausen, M. Schevenels, B. S. Lazarov, and O. Sigmund, Efficient topology optimization in MATLAB using 88 lines of code, Struct. Multidisc. Optim. 43, 1 (2011).

    Article  MATH  Google Scholar 

  30. K. Liu, and A. Tovar, An efficient 3D topology optimization code written in Matlab, Struct. Multidisc. Optim. 50, 1175 (2014).

    Article  MathSciNet  Google Scholar 

  31. Q. Chen, X. Zhang, and B. Zhu, A 213-line topology optimization code for geometrically nonlinear structures, Struct. Multidisc. Optim. 59, 1863 (2019).

    Article  MathSciNet  Google Scholar 

  32. V. J. Challis, A discrete level-set topology optimization code written in Matlab, Struct. Multidisc. Optim. 41, 453 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  33. M. Yaghmaei, A. Ghoddosian, and M. M. Khatibi, A filter-based level set topology optimization method using a 62-line MATLAB code, Struct. Multidisc. Optim. 62, 1001 (2020).

    Article  MathSciNet  Google Scholar 

  34. W. Zhang, J. Yuan, J. Zhang, and X. Guo, A new topology optimization approach based on moving morphable components (MMC) and the ersatz material model, Struct. Multidisc. Optim. 53, 1243 (2016).

    Article  MathSciNet  Google Scholar 

  35. Z. Du, T. Cui, C. Liu, W. Zhang, Y. Guo, and X. Guo, An efficient and easy-to-extend Matlab code of the moving morphable component (MMC) method for three-dimensional topology optimization, Struct. Multidisc. Optim. 65, 158 (2022).

    Article  Google Scholar 

  36. R. L. Pereira, H. N. Lopes, M. S. Moura, and R. Pavanello, Multidomain acoustic topology optimization based on the BESO approach: Applications on the design of multi-phase material mufflers, Struct. Multidisc. Optim. 66, 25 (2023).

    Article  Google Scholar 

  37. R. L. Pereira, H. N. Lopes, and R. Pavanello, Topology optimization of acoustic systems with a multiconstrained BESO approach, Finite Elem. Anal. Des. 201, 103701 (2022).

    Article  MathSciNet  Google Scholar 

  38. Z. L. Zhao, S. Zhou, K. Cai, and Y. Min Xie, A direct approach to controlling the topology in structural optimization, Comput. Struct. 227, 106141 (2020).

    Article  Google Scholar 

  39. Z. L. Zhao, S. Zhou, X. Q. Feng, and Y. M. Xie, Morphological optimization of scorpion telson, J. Mech. Phys. Solids 135, 103773 (2020).

    Article  MathSciNet  Google Scholar 

  40. Z. H. Zuo, and Y. M. Xie, A simple and compact Python code for complex 3D topology optimization, Adv. Eng. Software 85, 1 (2015).

    Article  Google Scholar 

  41. Y. Han, B. Xu, and Y. Liu, An efficient 137-line MATLAB code for geometrically nonlinear topology optimization using bi-directional evolutionary structural optimization method, Struct. Multidisc. Optim. 63, 2571 (2021).

    Article  MathSciNet  Google Scholar 

  42. O. Sigmund, and J. Petersson, Numerical instabilities in topology optimization: A survey on procedures dealing with checkerboards, mesh-dependencies and local minima, Struct. Optim. 16, 68 (1998).

    Article  Google Scholar 

  43. B. Bourdin, Filters in topology optimization, Int. J. Numer. Meth. Eng. 50, 2143 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  44. T. E. Bruns, and D. A. Tortorelli, Topology optimization ofnon-linear elastic structures and compliant mechanisms, Comput. Methods Appl. Mech. Eng. 190, 3443 (2001).

    Article  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 12272034, 11921002, and 12002184), the Fundamental Research Funds for the Central Universities (Grant No. 501LKQB2022105038), and the Australian Research Council (Grant Nos. DE200100887 and FL190100014).

Author information

Authors and Affiliations

Authors

Contributions

Zi-Long ZhaoConceptualization, Methodology, Investigation, Formal analysis, Funding acquisition, Software, Supervision, Writing–original draft & review & editing . Yi Rong: Methodology, Investigation, Formal analysis, Software, Writing–original draft. Yi Yan: Writing–review & editing. Xi-Qiao Feng: Supervision, Writing–review & editing. Yi Min Xie: Supervision, Writing–review & editing.

Corresponding author

Correspondence to Zi-Long Zhao  (赵子龙).

Supplementary Material for

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, ZL., Rong, Y., Yan, Y. et al. A subdomain-based parallel strategy for structural topology optimization. Acta Mech. Sin. 39, 422357 (2023). https://doi.org/10.1007/s10409-023-22357-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10409-023-22357-x

Navigation