Skip to main content
Log in

Atomistic study on high temperature creep of nanocrystalline 316L austenitic stainless steels

纳米多晶316L奥氏体不锈钢高温蠕变行为的原子尺度研究

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

The creep deformation behavior and creep mechanisms of nanocrystalline 316L austenitic stainless steels at high temperature with different peak stresses are investigated by molecular dynamics simulations. Numerical results demonstrate that the creep deformation of nanocrystalline 316L austenitic stainless steels at high temperature is caused by the interaction among the dislocations, diffusion in the grains’ interior and grain boundaries (GBs), and the sliding of GBs. The dominant mechanisms of high temperature creep are diffusion in the grains’ interior and GBs and the sliding of GBs during the initial creep and steady-state creep stages of nanocrystalline 316L austenitic stainless steels. Dislocation slipping becomes the main mechanism of nanocrystalline 316L austenitic stainless steels during the accelerated creep stage after some GBs are destroyed. This work provides a fundamental understanding of the creep mechanisms of nanocrystalline 316L austenitic stainless steel, which guides the design and fabrication of enhanced creep-resistant 316L austenitic stainless steels.

摘要

通过分子动力学模拟研究了纳米多晶316L奥氏体不锈钢在不同峰值应力下的高温蠕变变形行为和蠕变机制. 数值模拟结果表 明纳米多晶316L奥氏体不锈钢的高温蠕变变形是由位错、晶粒内部和晶界扩散以及晶界滑移之间的交互作用引起. 在初始蠕变和稳 态蠕变阶段, 纳米多晶316L奥氏体不锈钢高温蠕变的主导性机制是晶粒内部和晶界的扩散以及晶界的滑移. 在加速蠕变阶段, 一些晶 界被摧毁后, 位错滑移成为纳米多晶316L奥氏体不锈钢的主要蠕变机制. 这项工作旨在揭示纳米多晶316L奥氏体不锈钢的高温蠕变机 理, 为增强型抗蠕变316L奥氏体不锈钢的设计和制造提供指导.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Y. Yamamoto, M. P. Brady, Z. P. Lu, P. J. Maziasz, C. T. Liu, B. A. Pint, K. L. More, H. M. Meyer, and E. A. Payzant, Creep-resistant, Al2O3-forming austenitic stainless steels, Science 316, 433 (2007).

    Article  Google Scholar 

  2. S. J. Zinkle, and G. S. Was, Materials challenges in nuclear energy, Acta Mater. 61, 735 (2013).

    Article  Google Scholar 

  3. J. B. Baudouin, A. Nomoto, M. Perez, G. Monnet, and C. Domain, Molecular dynamics investigation of the interaction of an edge dislocation with Frank loops in Fe-Ni10-Cr20 alloy, J. Nucl. Mater. 465, 301 (2015).

    Article  Google Scholar 

  4. Y. Zeng, and X. Li, Atomistic simulations of high-temperature creep in nanotwinned TiAl alloys, Extreme Mech. Lett. 44, 101253 (2021).

    Article  Google Scholar 

  5. X. Xiao, S. Li, and L. Yu, A general steady-state creep model incorporating dislocation static recovery for pure metallic materials, Int. J. Plast. 157, 103394 (2022).

    Article  Google Scholar 

  6. X. S. Yang, Y. J. Wang, H. R. Zhai, G. Y. Wang, Y. J. Su, L. H. Dai, S. Ogata, and T. Y. Zhang, Time-, stress-, and temperature-dependent deformation in nanostructured copper: Creep tests and simulations, J. Mech. Phys. Solids 94, 191 (2016).

    Article  Google Scholar 

  7. X. S. Yang, H. R. Zhai, H. H. Ruan, S. Q. Shi, and T. Y. Zhang, Multi-temperature indentation creep tests on nanotwinned copper, Int. J. Plast. 104, 68 (2018).

    Article  Google Scholar 

  8. J. Xu, H. Gruber, D. Deng, R. L. Peng, and J. J. Moverare, Short-term creep behavior of an additive manufactured non-weldable Nickel-base superalloy evaluated by slow strain rate testing, Acta Mater. 179, 142 (2019).

    Article  Google Scholar 

  9. W. Zhang, X. Wang, Y. Wang, X. Yu, Y. Gao, and Z. Feng, Type IV failure in weldment of creep resistant ferritic alloys: I. Micromechanical origin of creep strain localization in the heat affected zone, J. Mech. Phys. Solids 134, 103774 (2020).

    Article  Google Scholar 

  10. L. Zhao, L. Xu, and K. Nikbin, Predicting failure modes in creep and creep-fatigue crack growth using a random grain/grain boundary idealised microstructure meshing system, Mater. Sci. Eng.-A 704, 274 (2017).

    Article  Google Scholar 

  11. V. Yamakov, D. Wolf, S. R. Phillpot, and H. Gleiter, Grain-boundary diffusion creep in nanocrystalline palladium by molecular-dynamics simulation, Acta Mater. 50, 61 (2002).

    Article  Google Scholar 

  12. A. J. Haslam, V. Yamakov, D. Moldovan, D. Wolf, S. R. Phillpot, and H. Gleiter, Effects of grain growth on grain-boundary diffusion creep by molecular-dynamics simulation, Acta Mater. 52, 1971 (2004).

    Article  Google Scholar 

  13. M. A. Bhatia, S. N. Mathaudhu, and K. N. Solanki, Atomic-scale investigation of creep behavior in nanocrystalline Mg and Mg-Y alloys, Acta Mater. 99, 382 (2015).

    Article  Google Scholar 

  14. Y. J. Wang, A. Ishii, and S. Ogata, Transition of creep mechanism in nanocrystalline metals, Phys. Rev. B 84, 224102 (2011).

    Article  Google Scholar 

  15. S. Jiao, and Y. Kulkarni, Molecular dynamics study of creep mechanisms in nanotwinned metals, Comput. Mater. Sci. 110, 254 (2015).

    Article  Google Scholar 

  16. G. Bonny, D. Terentyev, R. C. Pasianot, S. Poncé, and A. Bakaev, Interatomic potential to study plasticity in stainless steels: the FeNiCr model alloy, Model. Simul. Mater. Sci. Eng. 19, 085008 (2011).

    Article  Google Scholar 

  17. G. Bonny, N. Castin, and D. Terentyev, Interatomic potential for studying ageing under irradiation in stainless steels: The FeNiCr model alloy, Model. Simul. Mater. Sci. Eng. 21, 085004 (2013).

    Article  Google Scholar 

  18. X. W. Zhou, M. E. Foster, and R. B. Sills, An Fe-Ni-Cr embedded atom method potential for austenitic and ferritic systems, J. Comput. Chem. 39, 2420 (2018).

    Article  Google Scholar 

  19. R. Collette, and J. King, Molecular dynamics simulations of radiation cascade evolution near cellular dislocation structures in additively manufactured stainless steels, J. Nucl. Mater. 549, 152872 (2021).

    Article  Google Scholar 

  20. X. Wang, C. Liu, Z. Zhou, Y. Zhang, and M. Huang, In-situ EBSD investigation of plastic damage in a 316 austenitic stainless steel and its molecular dynamics (MD) simulations, J. Mater. Res. Tech. 13, 823 (2021).

    Article  Google Scholar 

  21. K. Chu, M. E. Foster, R. B. Sills, X. Zhou, T. Zhu, and D. L. McDowell, Temperature and composition dependent screw dislocation mobility in austenitic stainless steels from large-scale molecular dynamics, npj Comput. Mater. 6, 179 (2020).

    Article  Google Scholar 

  22. K. Benyelloul, and H. Aourag, Elastic constants of austenitic stainless steel: Investigation by the first-principles calculations and the artificial neural network approach, Comput. Mater. Sci. 67, 353 (2013).

    Article  Google Scholar 

  23. C. Wu, B. J. Lee, and X. Su, Modified embedded-atom interatomic potential for Fe-Ni, Cr-Ni and Fe-Cr-Ni systems, Calphad 57, 98 (2017).

    Article  Google Scholar 

  24. B. Wang, G. Kang, C. Yu, B. Gu, and W. Yuan, Molecular dynamics simulations on one-way shape memory effect of nanocrystalline NiTi shape memory alloy and its cyclic degeneration, Int. J. Mech. Sci. 211, 106777 (2021).

    Article  Google Scholar 

  25. B. Wang, G. Kang, W. Wu, K. Zhou, Q. Kan, and C. Yu, Molecular dynamics simulations on nanocrystalline super-elastic NiTi shape memory alloy by addressing transformation ratchetting and its atomic mechanism, Int. J. Plast. 125, 374 (2020).

    Article  Google Scholar 

  26. S. Plimpton, Fast parallel algorithms for short-range molecular dynamics, J. Comput. Phys. 117, 1 (1995).

    Article  Google Scholar 

  27. A. Stukowski, Visualization and analysis of atomistic simulation data with OVITO—the open visualization tool, Model. Simul. Mater. Sci. Eng. 18, 015012 (2010).

    Article  Google Scholar 

  28. R. K. Desu, H. Nitin Krishnamurthy, A. Balu, A. K. Gupta, and S. K. Singh, Mechanical properties of Austenitic Stainless Steel 304L and 316L at elevated temperatures, J. Mater. Res. Tech. 5, 13 (2016).

    Article  Google Scholar 

  29. A. Stukowski, Structure identification methods for atomistic simulations of crystalline materials, Model. Simul. Mater. Sci. Eng. 20, 045021 (2012).

    Article  Google Scholar 

  30. X. Li, Y. Wei, L. Lu, K. Lu, and H. Gao, Dislocation nucleation governed softening and maximum strength in nano-twinned metals, Nature 464, 877 (2010).

    Article  Google Scholar 

  31. C. Duan, and Y. Wei, Scaling of internal dissipation of polycrystalline solids on grain-size and frequency, Acta Mater. 201, 350 (2020).

    Article  Google Scholar 

  32. X. Li, Y. Wei, W. Yang, and H. Gao, Competing grain-boundary- and dislocation-mediated mechanisms in plastic strain recovery in nanocrystalline aluminum, Proc. Natl. Acad. Sci. USA 106, 16108 (2009).

    Article  Google Scholar 

  33. A. Stukowski, V. V. Bulatov, and A. Arsenlis, Automated identification and indexing of dislocations in crystal interfaces, Model. Simul. Mater. Sci. Eng. 20, 085007 (2012).

    Article  Google Scholar 

  34. A. Suzuki, and Y. Mishin, Atomic mechanisms of grain boundary diffusion: Low versus high temperatures, J. Mater. Sci. 40, 3155 (2005).

    Article  Google Scholar 

  35. W. S. Ko, W. S. Choi, G. Xu, P. P. Choi, Y. Ikeda, and B. Grabowski, Dissecting functional degradation in NiTi shape memory alloys containing amorphous regions via atomistic simulations, Acta Mater. 202, 331 (2021).

    Article  Google Scholar 

  36. W. S. Ko, S. B. Maisel, B. Grabowski, J. B. Jeon, and J. Neugebauer, Atomic scale processes of phase transformations in nanocrystalline NiTi shape-memory alloys, Acta Mater. 123, 90 (2017).

    Article  Google Scholar 

  37. J. Schiøtz, F. D. Di Tolla, and K. W. Jacobsen, Softening of nanocrystalline metals at very small grain sizes, Nature 391, 561 (1998).

    Article  Google Scholar 

  38. J. Schiøtz, and K. W. Jacobsen, A maximum in the strength of nanocrystalline copper, Science 301, 1357 (2003).

    Article  Google Scholar 

  39. Z. Sun, T. Guo, K. I. Elkhodary, H. Yang, N. Zhou, and S. Tang, Localization and macroscopic instability in nanoporous metals, Acta Mech. Sin. 38, 121538 (2022).

    Article  MathSciNet  Google Scholar 

  40. H. Xiang, and W. Guo, A newly developed interatomic potential of Nb-Al-Ti ternary systems for high-temperature applications, Acta Mech. Sin. 38, 121451 (2022).

    Article  Google Scholar 

  41. V. Yamakov, D. Wolf, S. R. Phillpot, A. K. Mukherjee, and H. Gleiter, Deformation-mechanism map for nanocrystalline metals by molecular-dynamics simulation, Nat. Mater 3, 43 (2004).

    Article  Google Scholar 

  42. X. Yang, H. Zhao, X. Gao, G. Lei, and Z. Chen, Molecular dynamics study on micro jet in single crystal aluminum, Acta Mech. Sin. 39, 122232 (2023).

    Article  Google Scholar 

  43. L. A. Zepeda-Ruiz, A. Stukowski, T. Oppelstrup, and V. V. Bulatov, Probing the limits of metal plasticity with molecular dynamics simulations, Nature 550, 492 (2017).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 12102372 and 11872324), and the Natural Science Foundation of Southwest University of Science and Technology (Grant Nos. 20zx7115 and 22dsts07). The work was also carried out at National Supercomputer Center in Tianjin, and the calculations were performed on TianHe-1A.

Author information

Authors and Affiliations

Authors

Contributions

Bing Wang wrote the first draft of the manuscript, offered the funding acquisition, set up the methodology of molecular dynamics simulations, and edited the final version. Qian Wang and Rong Luo performed visualization work, processed the data, and revised and edited the manuscript. Qianhua Kan supervised the paper writing and gave financial support of paper publishment. Bin Gu offered the resources and edited the final version.

Corresponding author

Correspondence to Bin Gu  (古斌).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, B., Wang, Q., Luo, R. et al. Atomistic study on high temperature creep of nanocrystalline 316L austenitic stainless steels. Acta Mech. Sin. 39, 122470 (2023). https://doi.org/10.1007/s10409-022-22470-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10409-022-22470-x

Navigation