Skip to main content
Log in

Study on perforation of elliptical cross-section projectile into finite-thick metal targets

椭圆截面弹体贯穿有限厚金属靶特性研究

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

The model of the elliptical cross-section projectile perforating finite-thick metal targets was developed by combining with the shape function of the elliptical cross-section projectile, where the elastic-decay, plastic-decay, cracking three-stage perforation model was employed. Then, experiments of projectile perforating finite-thick aluminum alloy targets were conducted, including two kinds of elliptical cross-section projectiles and one kind of circular cross-section projectile. The striking velocity of the projectile ranged from 230 m/s to 570 m/s, in which the ballistic limit velocity (BLV) was included. The existed and current experimental results were used to validate the model and agreed well with the calculation results. Besides, the perforation performance of elliptical cross-section projectile and circular cross-section projectile was analyzed. The results showed that the two can be regarded as equivalent projectiles when the mass, head length, any cross-sectional area, and length of projectiles were equal. Next, the critical non-dimensional target thickness was clarified under the different striking factors of the projectile. Calculation results showed that the critical non-dimensional target thickness had a linear relation with the striking factor of the projectile. Furthermore, the influences of the head shape factor of elliptical cross-section projectile on perforation characteristics were studied.

摘要

本文结合弹性衰减-塑性衰减-开裂三阶段贯穿模型及椭圆截面弹体形状函数, 建立了椭圆截面弹体贯穿有限厚金属靶侵彻模型. 随后, 开展了两种椭圆截面弹体及一种圆截面弹体以230~570 m/s的撞击速度对铝合金靶板的贯穿试验, 且试验覆盖了弹道极限速度. 在此基础上, 采用本文及文献中的试验数据对模型进行了验证, 模型的计算结果与试验结果吻合较好. 此外, 对比分析了椭圆截面弹体与圆截面弹体对有限厚金属靶的贯穿特性. 结果表明, 当椭圆截面弹体与圆截面弹体的质量、 弹体头部长度、 任意弹体截面面积及弹体长度相等时, 二者可视为等效弹体. 其次, 确定了无量纲靶体临界厚度与弹体撞击因子间的关系. 计算结果表明, 无量纲靶体临界厚度与弹体撞击因子呈线性关系, 同时, 进一步分析了椭圆截面弹体头部形状因子对其贯穿特性的影响规律.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. J. Ning, W. Song, and J. Wang, A study of the perforation of stiffened plates by rigid projectiles, Acta Mech. Sin.. 21, 582 (2005).

    Article  Google Scholar 

  2. T. Cui, Q. Qin, W. Yan, T. Wang, and J. Zhang, Ballistic resistance of novel amorphous-alloy-reinforced perforated armor, Acta Mech. Solid Sin. 34, 12 (2021).

    Article  Google Scholar 

  3. S. N. Dikshit, and G. Sundararajan, The penetration of thick steel plates by ogive shaped projectiles—experiment and analysis, Int. J. Impact Eng. 12, 373 (1992).

    Article  Google Scholar 

  4. B. Srivathsa, and N. Ramakrishnan, On the ballistic performance of metallic materials, Bull. Mater. Sci. 20, 111 (1997).

    Article  Google Scholar 

  5. B. Srivathsa, and N. Ramakrishnan, Ballistic performance maps for thick metallic armour, J. Mater. Process. Tech. 96, 81 (1999).

    Article  Google Scholar 

  6. S. N. Dikshit, Oblique impact study in thin steel armour plate, Def. Sci. J. 48, 185 (1998).

    Article  Google Scholar 

  7. G. H. Liaghat, and A. Malekzadeh, A modification to the mathematical model of perforation by Dikshit and Sundararajan, Int. J. Impact Eng. 22, 543 (1999).

    Article  Google Scholar 

  8. G. Sundararajan, and S. N. Dikshit, The dynamic indentation behavior of steel at large depths of penetration, J. Mater. Res. 24, 691 (2009).

    Article  Google Scholar 

  9. A. L. Yarin, M. B. Rubin, and I. V. Roisman, Penetration of a rigid projectile into an elastic-plastic target of finite thickness, Int. J. Impact Eng. 16, 801 (1995).

    Article  Google Scholar 

  10. I. V. Roisman, K. Weber, A. L. Yarin, V. Hohler, and M. B. Rubin, Oblique penetration of a rigid projectile into a thick elastic-plastic target: theory and experiment, Int. J. Impact Eng. 22, 707 (1999).

    Article  Google Scholar 

  11. G. Yossifon, M. B. Rubin, and A. L. Yarin, Penetration of a rigid projectile into a finite thickness elastic-plastic target—comparison between theory and numerical computations, Int. J. Impact Eng. 25, 265 (2001).

    Article  Google Scholar 

  12. G. Yossifon, A. L. Yarin, and M. B. Rubin, Penetration of a rigid projectile into a multi-layered target: theory and numerical computations, Int. J. Eng. Sci. 40, 1381 (2002).

    Article  Google Scholar 

  13. M. J. Forrestal, V. K. Luk, and N. S. Brar, Perforation of aluminum armor plates with conical-nose projectiles, Mech. Mater. 10, 97 (1990).

    Article  Google Scholar 

  14. M. J. Forrestal, V. K. Luk, Z. Rosenberg, and N. S. Brar, Penetration of 7075-T651 aluminum targets with ogival-nose rods, Int. J. Solids Struct. 29, 1729 (1992).

    Article  Google Scholar 

  15. M. J. Forrestal, T. Børvik, and T. L. Warren, Perforation of 7075-T651 aluminum armor plates with 7.62 mm APM2 bullets, Exp. Mech. 50, 1245 (2010).

    Article  Google Scholar 

  16. M. J. Forrestal, and T. L. Warren, Perforation equations for conical and ogival nose rigid projectiles into aluminum target plates, Int. J. Impact Eng. 36, 220 (2009).

    Article  Google Scholar 

  17. M. J. Forrestal, T. Børvik, T. L. Warren, and W. Chen, Perforation of 6082-T651 aluminum plates with 7.62 mm APM2 bullets at normal and oblique impacts, Exp. Mech. 54, 471 (2014).

    Article  Google Scholar 

  18. M. J. Forrestal, T. L. Warren, and J. K. Holmen, Ballistic-limit velocities for 7.62 mm APM2 bullets and aluminum alloy armor plates, J. Dyn. Behav. Mater. 7, 624 (2021).

    Article  Google Scholar 

  19. Z. Rosenberg, and M. J. Forrestal, Perforation of aluminum plates with conical-nosed rods—additional data and discussion, J. Appl. Mech. 55, 236 (1988).

    Article  Google Scholar 

  20. A. J. Piekutowski, M. J. Forrestal, K. L. Poormon, and T. L. Warren, Perforation of aluminum plates with ogive-nose steel rods at normal and oblique impacts, Int. J. Impact Eng. 18, 877 (1996).

    Article  Google Scholar 

  21. T. Børvik, O. S. Hopperstad, T. Berstad, and M. Langseth, Perforation of 12mm thick steel plates by 20 mm diameter projectiles with flat, hemispherical and conical noses, Int. J. Impact Eng. 27, 37 (2002).

    Article  Google Scholar 

  22. T. Børvik, M. Langseth, O. S. Hopperstad, and K. A. Malo, Perforation of 12mm thick steel plates by 20 mm diameter projectiles with flat, hemispherical and conical noses, Int. J. Impact Eng. 27, 19 (2002).

    Article  Google Scholar 

  23. T. Børvik, A. H. Clausen, O. S. Hopperstad, and M. Langseth, Perforation of AA5083-H116 aluminium plates with conical-nose steel projectiles—experimental study, Int. J. Impact Eng. 30, 367 (2004).

    Article  Google Scholar 

  24. T. Børvik, M. J. Forrestal, O. S. Hopperstad, T. L. Warren, and M. Langseth, Perforation of AA5083-H116 aluminium plates with conical-nose steel projectiles—Calculations, Int. J. Impact Eng. 36, 426 (2009).

    Article  Google Scholar 

  25. T. Børvik, M. J. Forrestal, and T. L. Warren, Perforation of 5083-H116 aluminum armor plates with ogive-nose rods and 7.62 mm APM2 bullets, Exp. Mech. 50, 969 (2010).

    Article  Google Scholar 

  26. Z. G. Jiang, S. Y. Zeng, and J. P. Zhou, A three-stage model for the perforation of moderately thick metallic plates, Acta Armamentarii 28, 1046 (2007).

    Google Scholar 

  27. Y. Xiao, Q. Fang, W. Hao, X. Kong, and Y. Peng, A model for rigid sharp-nosed projectile perforating metallic targets considering free-surface and cracking effects, Explosion Shock Waves, 36, 359 (2016).

    Google Scholar 

  28. Y. K. Xiao, H. Wu, Q. Fang, and X. Z. Kong, A rigid projectile perforation model for metallic targets with the free-surface and fracture effects, Int. J. Prot. Struct. 8, 109 (2017).

    Article  Google Scholar 

  29. H. Dong, H. Wu, Z. Liu, X. Gao, A. Pi, J. Li, and F. Huang, Penetration characteristics of pyramidal projectile into concrete target, Int. J. Impact Eng. 143, 103583 (2020).

    Article  Google Scholar 

  30. X. Dai, K. Wang, M. Li, J. Duan, B. Qian, and G. Zhou, Rigid elliptical cross-section ogive-nose projectiles penetration into concrete targets, Def. Tech. 17, 800 (2021).

    Article  Google Scholar 

  31. J. Liu, X. Zhang, H. Wei, and C. Liu, Study on the penetration of elliptical cross-section projectiles into concrete targets: Theory and experiment, Lat. Am. J. Solids Struct. 19, 1 (2022).

    Article  Google Scholar 

  32. H. Dong, Z. Liu, H. Wu, X. Gao, A. Pi, and F. Huang, Study on penetration characteristics of high-speed elliptical cross-sectional projectiles into concrete, Int. J. Impact Eng. 132, 103311 (2019).

    Article  Google Scholar 

  33. J. Liu, X. Zhang, C. Liu, H. Wei, W. Xiong, and M. Tan, in Study on the boundary stress distribution of elliptical cavity under uniform pressure load: Proceedings of the 1th International Conference on Mechanical System Dynamics, Nanjing, 2022, pp. 24–27.

  34. J. Liu, C. Liu, X. Zhang, P. Li, H. Wei, W. Xiong, and M. Tan, Research on the penetration characteristics of elliptical cross-section projectile into semi-infinite metal targets, Int. J. Impact Eng. 173, 104438 (2023).

    Article  Google Scholar 

  35. H. Wei, X. Zhang, C. Liu, W. Xiong, H. Chen, and M. Tan, Oblique penetration of ogive-nosed projectile into aluminum alloy targets, Int. J. Impact Eng. 148, 103745 (2021).

    Article  Google Scholar 

  36. T. L. Warren, and K. L. Poormon, Penetration of 6061-T6511 aluminum targets by ogive-nosed VAR 4340 steel projectiles at oblique angles: experiments and simulations, Int. J. Impact Eng. 25, 993 (2001).

    Article  Google Scholar 

  37. L. Li, Dynamic Constitutive and Damage Parameters of 30CrMnSi-Ni2A Steel with Different Hardnesses (in Chinese), Dissertation for Master’s Degree (Nanjing University of Science and Technology, Nanjing, 2017).

    Google Scholar 

  38. X. W. Chen, and Q. M. Li, Perforation of a thick plate by rigid projectiles, Int. J. Impact Eng. 28, 743 (2003).

    Article  Google Scholar 

  39. S. Dey, T. Børvik, O. S. Hopperstad, J. R. Leinum, and M. Langseth, The effect of target strength on the perforation of steel plates using three different projectile nose shapes, Int. J. Impact Eng. 30, 1005 (2004).

    Article  Google Scholar 

  40. S. Dey, T. Børvik, X. Teng, T. Wierzbicki, and O. S. Hopperstad, On the ballistic resistance of double-layered steel plates: an experimental and numerical investigation, Int. J. Solids Struct. 44, 6701 (2007).

    Article  MATH  Google Scholar 

  41. X. W. Chen, and Q. M. Li, Deep penetration of a non-deformable projectile with different geometrical characteristics, Int. J. Impact Eng. 27, 619 (2002).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 12141202 and 12202205), and Fundamental Research Funds for the Central Universities (Grant No. 30919011401).

Author information

Authors and Affiliations

Authors

Contributions

Xianfeng Zhang designed the research. Haiyang Wei wrote the first draft of the manuscript. Haiyang Wei and Chuang Liu set up the experiment set-up and processed the experiment data. Junwei Liu and Pengcheng Li helped organize the manuscript. Haiyang Wei and Liang Qiao revised and edited the final version.

Corresponding author

Correspondence to Xianfeng Zhang  (张先锋).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, H., Liu, J., Zhang, X. et al. Study on perforation of elliptical cross-section projectile into finite-thick metal targets. Acta Mech. Sin. 39, 422429 (2023). https://doi.org/10.1007/s10409-022-22429-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10409-022-22429-x

Keywords

Navigation