Skip to main content
Log in

Improvement of the eN method for predicting hypersonic boundary-layer transition in case of modal exchange

存在模态转换时高超声速边界层转捩预测eN方法的改进

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

A Correction to this article was published on 04 May 2023

A Correction to this article was published on 04 May 2023

This article has been updated

Abstract

In hypersonic boundary layers, a disturbance may first manifest itself as a first mode wave and subsequently evolves into a second mode wave. Under such condition, the rationality of the traditional eN method, which is based on linear stability theory with a local parallel assumption, contains uncertainties. This paper evaluates the efficacy of the eN method in the presence of modal exchange by investigating the linear amplification of disturbance in a Mach 6 flat plate boundary layer. It is shown that the eN method significantly underestimates the N factor when the modal exchange from the first mode to the second mode occurs. Furthermore, under certain circumstances, linear stability theory fails to track the second mode when following a first mode from upstream to downstream, resulting in an inaccurate prediction of the eN method. A new strategy of computing the disturbance amplification is proposed. Results show that by neglecting the disturbance decay between the two instability modes, the proposed strategy provides more accurate results than existing strategies. This investigation provides a theoretical foundation for developing automatic and robust transition prediction tools based on the eN method.

摘要

在高超声速边界层中, 扰动可能先以第一模态波的形式出现, 之后又演化为第二模态波. eN方法以局部平行的线性稳定性理论为基础, 在这种情况下, 其合理性是受到质疑的. 本文通过研究马赫数为6的平板边界层中不稳定波的线性演化来考察eN方法在存在模态转换时的有效性. 研究发现, 当存在第一模态到第二模态的模态转换时, eN方法会明显低估扰动波放大的N值. 此外, 在特定情况下,线性稳定性理论还存在从上游的第一模态出发, 无法捕捉到向下游的第二模态的问题, 从而使eN方法无法给出准确的预测结果. 为此,本文提出了一种新的计算扰动增长的策略. 结果表明, 忽略第一模态和第二模态不稳定波之间的衰减区, 该策略得到的结果比现有的计算扰动演化方法更准确. 本文的研究为发展基于eN方法的自动化、可靠的转捩预测工具提供了理论支撑.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Change history

References

  1. P. Paredes, B. Venkatachari, M. M. Choudhari, F. Li, C. L. Chang, M. I. Zafar, and H. Xiao, Toward a practical method for hypersonic transition prediction based on stability correlations, AIAA J. 58, 4475 (2020).

    Article  Google Scholar 

  2. G. Tu, J. Chen, X. Yuan, Q. Yang, M. Duan, Q. Yang, Y. Duan, X. Chen, B. Wan, and X. Xiang, Progress in flight tests of hypersonic boundary layer transition, Acta Mech. Sin. 37, 1589 (2021).

    Article  Google Scholar 

  3. S. Liu, X. Yuan, Z. Liu, Q. Yang, G. Tu, X. Chen, Y. Gui, and J. Chen, Design and transition characteristics of a standard model for hypersonic boundary layer transition research, Acta Mech. Sin. 37, 1637 (2021).

    Article  MathSciNet  Google Scholar 

  4. X. Li, J. Chen, Z. Huang, Q. Yang, and G. Xu, Stability analysis and transition prediction of streamwise vortices over a yawed cone at Mach 6, Phys. Fluids 32, 124110 (2020).

    Article  Google Scholar 

  5. H. B. Niu, S. H. Yi, J. J. Huo, W. P. Zheng, and X. L. Liu, Experimental study on hypersonic crossflow instability over a swept flat plate by flow visualization, Acta Mech. Sin. 37, 1395 (2021).

    Article  Google Scholar 

  6. X. Zhong, Leading-edge receptivity to free-stream disturbance waves for hypersonic flow over a parabola, J. Fluid Mech. 441, 315 (2001).

    Article  MATH  Google Scholar 

  7. J. V. Ingen, in The eN method for transition prediction. Historical review of work at TU Delft: Proceedings of 38th AIAA Fluid Dynamics Conference and Exhibit (AIAA, Seatle, 2008).

  8. T. Cebeci, and K. Stewartson, On stability and transition in three-dimensional flows, AIAA J. 18, 398 (1980).

    Article  MathSciNet  MATH  Google Scholar 

  9. T. Cebeci, J. P. Shao, H. H. Chen, and K. C. Chang, in The preferred approach for calculating transition by stability theory: Proceedings of International Conference on Boundary and Interior Layers (ONERA, Toulouse, 2004).

    Google Scholar 

  10. J. N. Hefner, and D. M. Bushnell, Status of linear boundary-layer stability theory and the eN method, with emphasis on swept-wing applications, NASA Tech. Pap. 1645 (1980).

  11. J. D. Crouch, I. W. M. Crouch, and L. L. Ng, Transition prediction for three-dimensional boundary layers in computational fluid dynamics applications, AIAA J. 40, 1536 (2002).

    Article  Google Scholar 

  12. F. J. Chen, I. E. Beckwith, and M. R. Malik, Boundary-layer transition on a cone and flat plate at Mach 3.5, AIAA J. 27, 687 (1989).

    Article  Google Scholar 

  13. M. R. Malik, and P. Balakumar, in Instability and transition in three-dimensional supersonic boundary layers: Proceedings of 4th AlAA International Aerospace Planes Conference (AIAA, Orlando, 1992).

    Book  MATH  Google Scholar 

  14. J. S. Jewell, and R. L. Kimmel, Boundary-layer stability analysis for Stetson’s Mach 6 blunt-cone experiments, J. Spacecraft Rockets 54, 258 (2017).

    Article  Google Scholar 

  15. J. S. Jewell, R. E. Kennedy, S. J. Laurence, and R. L. Kimmel, Transition on a variable bluntness 7-degree cone at high Reynolds number: Proceedings of 2018 AIAA Aerospace Sciences Meeting (AIAA, Kissimmee, 2018).

    Book  Google Scholar 

  16. E. C. Marineau, G. C. Moraru, D. R. Lewis, J. D. Norris, J. F. Lafferty, R. M. Wagnild, and J. A. Smith, Mach 10 boundary layer transition experiments on sharp and blunted cones (invited): Proceedings of 19th AIAA International Space Planes and Hypersonic Systems and Technologies Conference (AIAA, Atlanta, 2014).

    Book  Google Scholar 

  17. A. V. Fedorov, and A. P. Khokhlov, Excitation of unstable modes in a supersonic boundary layer by acoustic waves, Fluid Dyn. 26, 531 (1991).

    Article  MATH  Google Scholar 

  18. A. V. Fedorov, and A. P. Khokhlov, Prehistory of instability in a hypersonic boundary layer, Theor. Comput. Fluid Dyn. 14, 359 (2001).

    Article  MATH  Google Scholar 

  19. A. V. Fedorov, Receptivity of a high-speed boundary layer to acoustic disturbances, J. Fluid Mech. 491, 101 (2003).

    Article  MATH  Google Scholar 

  20. A. Fedorov, Transition and stability of high-speed boundary layers, Annu. Rev. Fluid Mech. 43, 79 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  21. P. Balakumar, R. A. King, A. Chou, L. R. Owens, and M. A. Kegerise, Receptivity and forced response to acoustic disturbances in high-speed boundary layers, AIAA J. 56, 510 (2018).

    Article  Google Scholar 

  22. B. Wan, J. Luo, and C. Su, Response of a hypersonic blunt cone boundary layer to slow acoustic waves with assessment of various routes of receptivity, Appl. Math. Mech.-Engl. Ed. 39, 1643 (2018).

    Article  MathSciNet  Google Scholar 

  23. C. Su, Aero-optical analysis of a film-cooled optical window based on linear stability analysis, AIAA J. 57, 2840 (2019).

    Article  Google Scholar 

  24. B. Wan, C. Su, and J. Chen, Receptivity of a hypersonic blunt cone: Role of disturbances in entropy layer, AIAA J. 58, 4047 (2020).

    Article  Google Scholar 

  25. J. Gao, The method of the stability analysis and receptivity to acoustics in supersonic boundary layers (Tianjin University, Tianjin, 2014).

    Google Scholar 

  26. D. H. Rudy, and J. C. Strikwerda, A nonreflecting outflow boundary condition for subsonic navier-stokes calculations, J. Comput. Phys. 36, 55 (1980).

    Article  MathSciNet  MATH  Google Scholar 

  27. Y. M. Zhang, Applications of PSE to evolution of disturbances in compressible boundary layers and to secondary instability in supersonic boundary layers (Tianjin University, Tianjin, 2008).

    Google Scholar 

  28. Y. Liu, G. H. Tu, X. H. Xiang, X. H. Li, Q. L. Guo, and B. B. Wan, Parametrization of suppressing hypersonic second-mode waves by transverse rectangular microgrooves, Acta Phys. Sin. 71, 194701 (2022).

    Article  Google Scholar 

  29. P. Paredes, M. M. Choudhari, and F. Li, Mechanism for frustum transition over blunt cones at hypersonic speeds, J. Fluid Mech. 894, A22 (2020).

    Article  MathSciNet  MATH  Google Scholar 

  30. V. Esfahanian, K. Hejranfar, and F. Sabetghadam, Linear and nonlinear PSE for stability analysis of the Blasius boundary layer using compact scheme, J. Fluids Eng. 123, 545 (2001).

    Article  Google Scholar 

  31. F. Li, M. M. Choudhari, L. Duan, and C. L. Chang, Nonlinear development and secondary instability of traveling crossflow vortices, Phys. Fluids 26, 064104 (2014).

    Article  Google Scholar 

  32. A. Fedorov, and A. Tumin, The Mack’s amplitude method revisited, Theor. Comput. Fluid Dyn. 36, 9 (2022).

    Article  MathSciNet  Google Scholar 

  33. J. Ren, O. Marxen, and R. Pecnik, Boundary-layer stability of supercritical fluids in the vicinity of the Widom line, J. Fluid Mech. 871, 831 (2019).

    Article  MathSciNet  MATH  Google Scholar 

  34. J. C. Robinet, and X. Gloerfelt, Instabilities in non-ideal fluids, J. Fluid Mech. 880, 1 (2019).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 91952202). The authors thank Heng Zhou of Tianjin University for fruitful discussions and insights.

Author information

Authors and Affiliations

Authors

Contributions

Author contributions Caihong Su designed the overarching research goals and aims, obtained financial support, and provided the programing. Zhangfeng Huang designed the methodology and created the model. Shasha Tao performed the program test and data organization and wrote the first draft of the manuscript. Caihong Su helped organize the manuscript. Shasha Tao and Caihong Su revised and edited the final version.

Corresponding author

Correspondence to Caihong Su  (苏彩虹).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tao, S., Su, C. & Huang, Z. Improvement of the eN method for predicting hypersonic boundary-layer transition in case of modal exchange. Acta Mech. Sin. 39, 122416 (2023). https://doi.org/10.1007/s10409-022-22416-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10409-022-22416-x

Keywords

Navigation