Skip to main content
Log in

Large deflection of a bilayer soft strip due to incompatibility of isotropic volumic expansion

各向同性体积膨胀导致的双层条结构大挠度弯曲

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

Since the traditional bending theory of bilayers was mainly for linear elastic materials with the assumption of infinitesimal deformation, here we study the bending of a bilayer soft strip with large deformation. The strip under investigation is comprised of an active layer and a passive layer, where only the active layer is assumed to be subjected to an isotropic volumic expansion. A bending theory for the large deformation of the strip is then developed. The subsequent analysis indicates that our theoretical predictions agree well with the finite element simulation, which, however, can significantly diverge from those predicted by the traditional theory under certain circumstances. With our theory, it is also shown that there exists an optimal modulus ratio or thickness ratio for a bilayer strip to achieve a maximal curvature. We suggest that our theory may greatly facilitate the design of soft bilayer strips that can be potentially employed in varied fields.

摘要

传统双层材料的弯曲理论主要针对小变形、线弹性材料. 这里我们研究了双层条的大变形弯曲, 建立了一个描述双层条大变形弯曲的理论. 理论中假设双层条由一个主动层和一个被动层组成, 只有主动层会产生各向同性体积膨胀. 分析表明我们的理论预测与有限元模拟符合较好, 而在某些情况下会与传统理论预测有明显的差异. 我们理论分析还表明, 存在能使双层条得到最大曲率的最佳模量比及厚度比. 我们的理论可促进软质双层条带材的设计, 可广泛用于多个领域.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. P. T. Martone, M. Boller, I. Burgert, J. Dumais, J. Edwards, K. Mach, N. Rowe, M. Rueggeberg, R. Seidel, and T. Speck, Mechanics without muscle: Biomechanical inspiration from the plant world, Integr. Comp. Biol. 50, 888 (2010).

    Article  Google Scholar 

  2. C. Dawson, J. F. V. Vincent, and A. M. Rocca, How pine cones open, Nature 390, 668 (1997).

    Article  Google Scholar 

  3. K. Song, E. Yeom, and S. J. Lee, Real-time imaging of pulvinus bending in Mimosa pudica, Sci. Rep. 4, 6466 (2014).

    Article  Google Scholar 

  4. N. B. Hubbard, M. L. Culpepper, and L. L. Howell, Actuators for micropositioners and nanopositioners, Appl. Mech. Rev. 59, 324 (2006).

    Article  Google Scholar 

  5. J. C. Breger, C. K. Yoon, R. Xiao, H. R. Kwag, M. O. Wang, J. P. Fisher, T. D. Nguyen, and D. H. Gracias, Self-folding thermomagnetically responsive soft microgrippers, ACS Appl. Mater. Interfaces 7, 3398 (2015).

    Article  Google Scholar 

  6. Y. Luo, J. Zou, and G. Gu, Multimaterial pneumatic soft actuators and robots through a planar laser cutting and stacking approach, Adv. Intell. Syst. 3, 2000257 (2021).

    Article  Google Scholar 

  7. R. V. Martinez, C. R. Fish, X. Chen, and G. M. Whitesides, Elastomeric origami: programmable paper-elastomer composites as pneumatic actuators, Adv. Funct. Mater. 22, 1376 (2012).

    Article  Google Scholar 

  8. Y. Zhang, H. F. Ji, G. M. Brown, and T. Thundat, Detection of CrO 2−4 using a hydrogel swelling microcantilever sensor, Anal. Chem. 75, 4773 (2003).

    Article  Google Scholar 

  9. Y. Cheng, C. Huang, D. Yang, K. Ren, and J. Wei, Bilayer hydrogel mixed composites that respond to multiple stimuli for environmental sensing and underwater actuation, J. Mater. Chem. B 6, 8170 (2018).

    Article  Google Scholar 

  10. H. Yang, Y. Liu, K. Sun, L. Fang, C. Lu, and Z. Xu, Precise prediction of photothermally induced irreversible bending deformation based on non-uniform thermal expansion of layer-structure films, Smart Mater. Struct. 31, 095041 (2022).

    Article  Google Scholar 

  11. C. Yao, Z. Liu, C. Yang, W. Wang, X. J. Ju, R. Xie, and L. Y. Chu, Poly(N-isopropylacrylamide)-Clay nanocomposite hydrogels with responsive bending property as temperature-controlled manipulators, Adv. Funct. Mater. 25, 2980 (2015).

    Article  Google Scholar 

  12. J. Li, Q. Ma, Y. Xu, M. Yang, Q. Wu, F. Wang, and P. Sun, Highly bidirectional bendable actuator engineered by lcst-ucst bilayer hydrogel with enhanced interface, ACS Appl. Mater. Interfaces 12, 55290 (2020).

    Article  Google Scholar 

  13. C. K. Yoon, Advances in biomimetic stimuli responsive soft grippers, Nano Convergence 6, 20 (2019).

    Article  Google Scholar 

  14. L. Cappello, K. C. Galloway, S. Sanan, D. A. Wagner, R. Granberry, S. Engelhardt, F. L. Haufe, J. D. Peisner, and C. J. Walsh, Exploiting textile mechanical anisotropy for fabric-based pneumatic actuators, Soft Robotics 5, 662 (2018).

    Article  Google Scholar 

  15. M. R. Islam, X. Li, K. Smyth, and M. J. Serpe, Polymer-based muscle expansion and contraction, Angew. Chem. Int. Ed. 52, 10330 (2013).

    Article  Google Scholar 

  16. C. Ma, T. Li, Q. Zhao, X. Yang, J. Wu, Y. Luo, and T. Xie, Supramolecular lego assembly towards three-dimensional multi-responsive hydrogels, Adv. Mater. 26, 5665 (2014).

    Article  Google Scholar 

  17. C. L. Randall, E. Gultepe, and D. H. Gracias, Self-folding devices and materials for biomedical applications, Trends Biotechnol. 30, 138 (2012).

    Article  Google Scholar 

  18. H. He, J. Guan, and J. L. Lee, An oral delivery device based on self-folding hydrogels, J. Control. Release 110, 339 (2006).

    Article  Google Scholar 

  19. S. Y. Kim, R. Baines, J. Booth, N. Vasios, K. Bertoldi, and R. Kramer-Bottiglio, Reconfigurable soft body trajectories using unidirectionally stretchable composite laminae, Nat. Commun. 10, 3464 (2019).

    Article  Google Scholar 

  20. X. Z. Zhang, Y. Y. Yang, F. J. Wang, and T. S. Chung, Thermosensitive Poly(N-isopropylacrylamide-co-acrylic acid) hydrogels with expanded network structures and improved oscillating swelling-deswelling properties, Langmuir 18, 2013 (2002).

    Article  Google Scholar 

  21. N. Bassik, B. T. Abebe, K. E. Laflin, and D. H. Gracias, Photolithographically patterned smart hydrogel based bilayer actuators, Polymer 51, 6093 (2010).

    Article  Google Scholar 

  22. M. R. Bayat, R. Dolatabadi, and M. Baghani, Transient swelling response of pH-sensitive hydrogels: A monophasic constitutive model and numerical implementation, Int. J. Pharm. 577, 119030 (2020).

    Article  Google Scholar 

  23. Y. Takashima, S. Hatanaka, M. Otsubo, M. Nakahata, T. Kakuta, A. Hashidzume, H. Yamaguchi, and A. Harada, Expansion-contraction of photoresponsive artificial muscle regulated by host-guest interactions, Nat. Commun. 3, 1270 (2012).

    Article  Google Scholar 

  24. M. Shojaeifard, and M. Baghani, On the finite bending of functionally graded light-sensitive hydrogels, Meccanica 54, 841 (2019).

    Article  MathSciNet  Google Scholar 

  25. D. Han, Z. Lu, S. A. Chester, and H. Lee, Micro 3D printing of a temperature-responsive hydrogel using projection micro-stereolithography, Sci. Rep. 8, 1963 (2018).

    Article  Google Scholar 

  26. A. Suzuki, and T. Tanaka, Phase transition in polymer gels induced by visible light, Nature 346, 345 (1990).

    Article  Google Scholar 

  27. S. Timoshenko, Analysis of bi-metal thermostats, J. Opt. Soc. Am. 11, 233 (1925).

    Article  Google Scholar 

  28. A. I. Egunov, J. G. Korvink, and V. A. Luchnikov, Polydimethylsiloxane bilayer films with an embedded spontaneous curvature, Soft Matter 12, 45 (2016).

    Article  Google Scholar 

  29. T. Morimoto, and F. Ashida, Temperature-responsive bending of a bilayer gel, Int. J. Solids Struct. 56–57, 20 (2015).

    Article  Google Scholar 

  30. C. Dong, and B. Chen, Quantifying the bending of bilayer temperature-sensitive hydrogels, Proc. R. Soc. A. 473, 20170092 (2017).

    Article  Google Scholar 

  31. M. C. Boyce, and E. M. Arruda, Constitutive models of rubber elasticity: A review, Rubber Chem. Tech. 73, 504 (2000).

    Article  Google Scholar 

  32. L. R. G. Treloar, The elasticity of a network of long-chain molecules—II, Trans. Faraday Soc. 39, 241 (1943).

    Article  Google Scholar 

  33. O. H. Yeoh, Characterization of elastic properties of carbon-black-filled rubber vulcanizates, Rubber Chem. Tech. 63, 792 (1990).

    Article  Google Scholar 

  34. R. W. Ogden, Large deformation isotropic elasticity—on the correlation of theory and experiment for incompressible rubberlike solids, Rubber Chem. Tech. 46, 398 (1973).

    Article  Google Scholar 

  35. Th. V. Kármán, Festigkeitsprobleme im Maschinenbau, in: Mechanik, edited by F. Klein, and C. Müller, (Vieweg+Teubner Verlag, Wiesbaden, 1907), pp. 311–385.

    Chapter  Google Scholar 

  36. A. Gupta, and S. Pradyumna, Geometrically nonlinear bending analysis of variable stiffness composite laminated shell panels with a higher-order theory, Compos. Struct. 276, 114527 (2021).

    Article  Google Scholar 

  37. P. Dash, and B. N. Singh, Geometrically nonlinear bending analysis of laminated composite plate, Commun. Nonlinear Sci. Numer. Simul. 15, 3170 (2010).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Zhejiang Provincial Natural Science Foundation of China (Grant No. LZ23A020004), and the National Natural Science Foundation of China (Grant No. 11872334).

Author information

Authors and Affiliations

Authors

Contributions

Puyu Cao contributed to the methodology, software, investigation, and writing. Yan Xu contributed to the investigation and writing. Bin Chen contributed to the conceptualization, methodology, investigation, and writing.

Corresponding authors

Correspondence to Yan Xu  (徐彦) or Bin Chen  (陈彬).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, P., Xu, Y. & Chen, B. Large deflection of a bilayer soft strip due to incompatibility of isotropic volumic expansion. Acta Mech. Sin. 39, 422374 (2023). https://doi.org/10.1007/s10409-022-22374-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10409-022-22374-x

Navigation