Skip to main content
Log in

A convected particle Gauss-quadrature interpolation for the cell crossing error reduction

用于降低网格穿越误差的对流粒子高斯积分插值法

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

Convected particle domain interpolation (CPDI) is a developed extension technique of the material point method (MPM), which can effectively reduce cell crossing error. However, it is still possible that CPDI does not ensure the convergence rate expected in the case of large deformation. Thus, this paper presents a new method, named convected particle Gauss-quadrature interpolation (CPGI), enhancing CPDI formulation by gauss quadrature. The CPGI considers the particle domain as four independent corner points and derives the particle-to-node mapping equations using gauss quadrature. Through numerical examples of axial vibration, generalized vortex, and collision, this work demonstrates the CPGI algorithm’s effectiveness in reducing the cell crossing error over the time of traversing the grid. Furthermore, the CPGI is evaluated using other different algorithms and initial configurations. As a result of the results, the algorithm has significant advantages in terms of accuracy and can provide reasonable efficiency.

摘要

对流粒子域插值法(CPDI)是物质点法(MPM)的一种改进算法, 能够抑制粒子跨越网格引起的数值噪声. 然而, 在大变形情况下,CPDI仍无法保证预期的收敛率. 因此, 本文提出了一种新方法, 称为对流粒子高斯积分插值法(CPGI). 通过高斯积分极大地提高了计算精度, 并为扩展到三维计算提供了便捷路径. CPGI将粒子域视为多个独立的角点组成, 利用高斯积分推导出粒子到网格节点的插值方程. 通过三个数值基准算例: 轴向振动、广义涡流和三维碰撞, 证明了CPGI算法在粒子穿越网格的过程中有效地减少了数值噪声. 此外, 通过比较不同初始构型和派生物质点法, 对CPGI的综合运算能力进行了评估. 从结果来看, 本算法在精度方面具有明显的优势, 并能有效地降低计算成本.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. T. Belytschko, W. K. Liu, B. Moran, and K. I. Elkhodary, Nonlinear Finite Elements for Continua and Structures, 2nd ed. (John Wiley & Sons, Chichester, 2014).

  2. A. Schmidt, and K. G. Siebert, Design of Adaptive Finite Element Software: The Finite Element Toolbox ALBERTA (Springer-Verlag, Berlin, 2005).

    MATH  Google Scholar 

  3. D. W. Pepper, and J. C. Heinrich, The Finite Element Method: Basic Concepts and Applications with MATLAB®, MAPLE, and COMSOL (Taylor & Francis Group, Oxford, 2017).

    Book  MATH  Google Scholar 

  4. R. S. Esfandiari, Numerical Methods for Engineers and Scientists Using MATLAB®, 2nd ed. (CRC Press, Boca Raton, 2017).

    MATH  Google Scholar 

  5. E. Oñate, Structural analysis with the finite element method: Linear statics, Volume 1: Basis and solids, in: International Center for Numerical Methods in Engineering (Barcelona, 2019).

  6. I. Babuška, The finite element method with Lagrangian multipliers, Numer. Math. 20, 179 (1973).

    Article  MathSciNet  MATH  Google Scholar 

  7. S. R. Idelsohn, E. Oñate, and F. Del Pin, A Lagrangian meshless finite element method applied to fluid-structure interaction problems, Comput. Struct. 81, 655 (2003).

    Article  Google Scholar 

  8. G. D. Hahn, A modified Euler method for dynamic analyses, Int. J. Numer. Meth. Eng. 32, 943 (1991).

    Article  MATH  Google Scholar 

  9. H. Braess, and P. Wriggers, Arbitrary Lagrangian Eulerian finite element analysis of free surface flow, Comput. Methods Appl. Mech. Eng. 190, 95 (2000).

    Article  MATH  Google Scholar 

  10. D. Sulsky, Z. Chen, and H. L. Schreyer, A particle method for history-dependent materials, Comput. Methods Appl. Mech. Eng. 118, 179 (1994).

    Article  MathSciNet  MATH  Google Scholar 

  11. Z. Więckowski, S. K. Youn, and J. H. Yeon, A particle-in-cell solution to the silo discharging problem, Int. J. Numer. Meth. Eng. 45, 1203 (1999).

    Article  MATH  Google Scholar 

  12. A. Renaud, T. Heuzé, and L. Stainier, The discontinuous Galerkin material point method for variational hyperelastic-plastic solids, Comput. Methods Appl. Mech. Eng. 365, 112987 (2020).

    Article  MathSciNet  MATH  Google Scholar 

  13. J. E. Guilkey, J. B. Hoying, and J. A. Weiss, Computational modeling of multicellular constructs with the material point method, J. Biomech. 39, 2074 (2006).

    Article  Google Scholar 

  14. L. Beuth, Z. Więckowski, and P. A. Vermeer, Solution of quasi-static large-strain problems by the material point method, Int. J. Numer. Anal. Meth. Geomech. 35, 1451 (2010).

    Google Scholar 

  15. P. Huang, S. Li, H. Guo, and Z. Hao, Large deformation failure analysis of the soil slope based on the material point method, Comput. Geosci. 19, 951 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  16. S. G. Bardenhagen, J. U. Brackbill, and D. Sulsky, The material-point method for granular materials, Comput. Methods Appl. Mech. Eng. 187, 529 (2000).

    Article  MATH  Google Scholar 

  17. S. G. Bardenhagen, J. E. Guilkey, K. M. Roessig, and J. U. Brackbill, An improved contact algorithm for the material point method and application to stress propagation in granular material, C-Comput. Model. Eng. Sci. 2, 509 (2001).

    MATH  Google Scholar 

  18. H. Tan, and J. A. Nairn, Hierarchical, adaptive, material point method for dynamic energy release rate calculations, Comput. Methods Appl. Mech. Eng. 191, 2123 (2002).

    Article  MATH  Google Scholar 

  19. J. A. Nairn, Material point method calculations with explicit cracks, C-Comput. Model. Eng. Sci. 4, 649 (2003).

    MATH  Google Scholar 

  20. N. P. Daphalapurkar, H. Lu, D. Coker, and R. Komanduri, Simulation of dynamic crack growth using the generalized interpolation material point (GIMP) method, Int. J. Fract. 143, 79 (2007).

    Article  MATH  Google Scholar 

  21. S. J. Cummins, and J. U. Brackbill, An implicit particle-in-cell method for granular materials, J. Comput. Phys. 180, 506 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  22. J. E. Guilkey, and J. A. Weiss, Implicit time integration for the material point method: Quantitative and algorithmic comparisons with the finite element method, Int. J. Numer. Meth. Eng. 57, 1323 (2003).

    Article  MATH  Google Scholar 

  23. M. Steffen, R. M. Kirby, and M. Berzins, Analysis and reduction of quadrature errors in the material point method (MPM), Int. J. Numer. Meth. Eng. 76, 922 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  24. E. Love, and D. L. Sulsky, An energy-consistent material-point method for dynamic finite deformation plasticity, Int. J. Numer. Meth. Eng. 65, 1608 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  25. S. G. Bardenhagen, Energy conservation error in the material point method for solid mechanics, J. Comput. Phys. 180, 383 (2002).

    Article  MATH  Google Scholar 

  26. M. Steffen, R. M. Kirby, and M. Berzins, Decoupling and balancing of space and time errors in the material point method (MPM), Int. J. Numer. Meth. Eng. 82, 1207 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  27. A. Sadeghirad, R. M. Brannon, and J. Burghardt, A convected particle domain interpolation technique to extend applicability of the material point method for problems involving massive deformations, Int. J. Numer. Meth. Eng. 86, 1435 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  28. S. G. Bardenhagen, and E. M. Kober, The generalized interpolation material point method, C-Comput. Model. Eng. Sci. 5, 477 (2004).

    Google Scholar 

  29. Y. Gan, Z. Sun, Z. Chen, X. Zhang, and Y. Liu, Enhancement of the material point method using B-spline basis functions, Int. J. Numer. Methods Eng. 113, 411 (2018).

    Article  MathSciNet  Google Scholar 

  30. Y. Liang, X. Zhang, and Y. Liu, An efficient staggered grid material point method, Comput. Methods Appl. Mech. Eng. 352, 85 (2019).

    Article  MathSciNet  MATH  Google Scholar 

  31. V. P. Nguyen, C. T. Nguyen, T. Rabczuk, and S. Natarajan, On a family of convected particle domain interpolations in the material point method, Finite Elem. Anal. Des. 126, 50 (2017).

    Article  MathSciNet  Google Scholar 

  32. A. Sadeghirad, R. M. Brannon, and J. E. Guilkey, Second-order convected particle domain interpolation (CPDI2) with enrichment for weak discontinuities at material interfaces, Int. J. Numer. Meth. Eng. 95, 928 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  33. S. Wolff, and C. Bucher, A finite element method based on C0-continuous assumed gradients, Int. J. Numer. Meth. Eng. 86, 876 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  34. P. Wilson, R. Wüchner, and D. Fernando, Distillation of the material point method cell crossing error leading to a novel quadrature-based C0 remedy, Int. J. Numer. Methods Eng. 122, 1513 (2021).

    Article  Google Scholar 

  35. W. Cecot, and M. Oleksy, High order FEM for multigrid homogenization, Comput. Math. Appl. 70, 1391 (2015).

    MathSciNet  MATH  Google Scholar 

  36. J. Dolbow, and T. Belytschko, Numerical integration of the Galerkin weak form in meshfree methods, Comput. Mech. 23, 219 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  37. S. R. Wu, Lumped mass matrix in explicit finite element method for transient dynamics of elasticity, Comput. Methods Appl. Mech. Eng. 195, 5983 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  38. Q. A. Tran, and W. Sołowski, Generalized interpolation material point method modelling of large deformation problems including strain-rate effects—Application to penetration and progressive failure problems, Comput. Geotech. 106, 249 (2019).

    Article  Google Scholar 

  39. Q. A. Tran, W. Sołowski, M. Berzins, and J. Guilkey, A convected particle least square interpolation material point method, Int. J. Numer. Methods Eng. 121, 1068 (2020).

    Article  MathSciNet  Google Scholar 

  40. X. Peng, E. Ji, Z. Fu, S. Chen, and Q. Zhong, An adaptive interpolation material point method and its application on large-deformation geotechnical problems, Comput. Geotech. 146, 104709 (2022).

    Article  Google Scholar 

  41. K. Kamojjala, R. Brannon, A. Sadeghirad, and J. Guilkey, Verification tests in solid mechanics, Eng. Comput. 31, 193 (2015).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (Grant No. 2021YFC3090101), and the Fundamental Research Funds for Central Commonweal Research Institutes (China) (Grant No. Y320008).

Author information

Authors and Affiliations

Authors

Contributions

Xuefeng Peng designed the methodology and software. Zhongzhi Fu presented conceptualization. Enyue Ji checked the manuscript. Shengshui Chen supervised and led the planning and implementation of scientific research activities. Qiming Zhong verified the test results.

Corresponding author

Correspondence to Zhongzhi Fu  (傅中志).

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, X., Fu, Z., Ji, E. et al. A convected particle Gauss-quadrature interpolation for the cell crossing error reduction. Acta Mech. Sin. 39, 422355 (2023). https://doi.org/10.1007/s10409-022-22355-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10409-022-22355-x

Navigation