Skip to main content
Log in

Transient heat transfer characteristics in spray cooling

喷雾冷却的瞬态传热特性

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

An experimental system of swirl spray cooling is designed to study the transient heat transfer efficiency of spray cooling with spray flow evolution. At an initial temperature of 300 °C, the spray cooling process is observed on a hot wall using a 20 mm × 20 mm square of aluminum alloy as the cooled specimen and water as the cooling medium. To measure the temperature variation, five high-precision thermocouples are used at five different locations along the vertical axis of the cooling specimen. Using the finite difference method, the one-dimensional unsteady heat conduction equation is solved, and the surface heat flux curve is obtained by inversion. The transient heat flux evolution curves under different working conditions are found by varying the spray height and flow rate. As a result, the spray cooling process is divided into four stages: I. the Leidenfrost effect stage (where the heat flux rises slowly), II. the liquid film formation stage (during which the heat flux rises sharply), III. the boiling stage (during which the heat flux decreases gradually), and IV. the convective evaporation stage (where the heat flux tends to equilibrium). As the heat flux reaches its peak value, the cooling process changes from the liquid film forming stage (stage II) to the boiling stage (stage III). The effect of spray height on liquid film is more significant when compared with the effect of pressure, which demonstrates that the heat transfer capacity at a spray height of 5 mm is significantly higher than at 10 mm and 15 mm, leading to the conclusion that the appropriate spray height is an important factor in maximizing the efficiency of spray cooling.

摘要

本文搭建旋流式喷雾冷却实验系统, 研究喷雾冷却的随喷雾流态演化的瞬态传热效率. 实验观测初始温度为300 °C的高热壁面的喷雾冷却过程. 冷却工质为水, 冷却试件为铝合金方块, 面积为20 mm × 20 mm. 利用5根高精度热电偶测量冷却试件竖直方向均布5个测点的温度变化, 并结合有限差分法求解一维非稳态热传导方程, 反演获得表面热流曲线. 实验通过改变喷雾高度和喷雾流量, 得到不同工况下瞬态热流密度的演化曲线. 结果表明, 喷雾冷却过程可分为4个阶段: I. Leidenfrost效应阶段(缓慢上升), II. 液膜形成阶段(急剧上升), III. 沸腾阶段(逐步下降), IV. 对流蒸发阶段(趋于平衡). 冷却过程由液膜形成阶段(第II阶段)向沸腾阶段(第III阶段)转变时, 热流密度达到峰值; 与工质压力影响相比, 喷雾高度对液膜影响作用更为显著, 5 mm喷雾高度下的换热能力要远高于10 mm及15 mm的工况, 合适的喷雾高度是促进喷雾冷却散热的重要因素.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. K. A. Estes, and I. Mudawar, Comparison of two-phase electronic cooling using free jets and sprays, J. Electron. Packag. 117, 323 (1995).

    Article  Google Scholar 

  2. R. P. Selvam, L. Lin, and R. Ponnappan, Direct simulation of spray cooling: Effect of vapor bubble growth and liquid droplet impact on heat transfer, Int. J. Heat Mass Transfer 49, 4265 (2006).

    Article  MATH  Google Scholar 

  3. E. A. Silk, E. L. Golliher, and R. Paneer Selvam, Spray cooling heat transfer: Technology overview and assessment of future challenges for micro-gravity application, Energy Convers. Manage. 49, 453 (2008).

    Article  Google Scholar 

  4. A. G. Pautsch, and T. A. Shedd, Spray impingement cooling with single- and multiple-nozzle arrays. Part I: Heat transfer data using FC-72, Int. J. Heat Mass Transfer 48, 3167 (2005).

    Article  Google Scholar 

  5. K. A. Estes, and I. Mudawar, Correlation of sauter mean diameter and critical heat flux for spray cooling of small surfaces, Int. J. Heat Mass Transfer 38, 2985 (1995).

    Article  Google Scholar 

  6. C. Sodtke, and P. Stephan, Spray cooling on micro structured surfaces, Int. J. Heat Mass Transfer 50, 4089 (2007).

    Article  Google Scholar 

  7. S. V. Ravikumar, K. Haldar, J. M. Jha, S. Chakraborty, I. Sarkar, S. K. Pal, and S. Chakraborty, Heat transfer enhancement using air-atomized spray cooling with water-Al2O3 nanofluid, Int. J. Thermal Sci. 96, 85 (2015).

    Article  Google Scholar 

  8. Y. Wang, M. Liu, D. Liu, K. Xu, and Y. Chen, Experimental study on the effects of spray inclination on water spray cooling performance in non-boiling regime, Exp. Thermal Fluid Sci. 34, 933 (2010).

    Article  Google Scholar 

  9. W. L. Cheng, Q. N. Liu, R. Zhao, and H. L. Fan, Experimental investigation of parameters effect on heat transfer of spray cooling, Heat Mass Transfer 46, 911 (2010).

    Article  Google Scholar 

  10. T. L. Fu, Z. D. Wang, X. T. Deng, G. H. Liu, and G. D. Wang, The influence of spray inclination angle on the ultra fast cooling of steel plate in spray cooling condition, Appl. Thermal Eng. 78, 500 (2015).

    Article  Google Scholar 

  11. S. S. Hsieh, T. C. Fan, and H. H. Tsai, Spray cooling characteristics of water and R-134a. Part II: transient cooling, Int. J. Heat Mass Transfer 47, 5713 (2004).

    Article  Google Scholar 

  12. S. S. Hsieh, and S. Y. Luo, Droplet impact dynamics and transient heat transfer of a micro spray system for power electronics devices, Int. J. Heat Mass Transfer 92, 190 (2016).

    Article  Google Scholar 

  13. J. M. Tian, B. Chen, D. Li, and Z. F. Zhou, Transient spray cooling: Similarity of dynamic heat flux for different cryogens, nozzles and substrates, Int. J. Heat Mass Transfer 108, 561 (2017).

    Article  Google Scholar 

  14. Y. Li, H. Guo, Z. Zhou, Z. Zhang, X. Ma, and L. Chen, Spray morphology transformation of propane, n-hexane and iso-octane under flash-boiling conditions, Fuel 236, 677 (2018).

    Article  Google Scholar 

  15. N. Zhou, H. Feng, M. Xu, and E. Liu, Heat transfer performance and influences of spray cooling under quenching, Therm. sci. 25, 4805 (2021).

    Article  Google Scholar 

  16. M. Ciofalo, A. Caronia, M. Di Liberto, and S. Puleo, The Nukiyama curve in water spray cooling: Its derivation from temperature-time histories and its dependence on the quantities that characterize drop impact, Int. J. Heat Mass Transfer 50, 4948 (2007).

    Article  MATH  Google Scholar 

  17. M. Ebrahim, B. Elkenani, and A. Ortega, Transient surface temperatures upon the impact of a single droplet onto a heated surface in the film evaporation regime, Int. J. Heat Mass Transfer 186, 122463 (2022).

    Article  Google Scholar 

  18. K. Tsukamoto, Y. Kita, S. Inoue, T. Hamanosono, S. Hidaka, S. Ueoka, H. Fukuda, M. Kohno, and Y. Takata, On the onset of quench during spray cooling: The significance of oxide layers, Appl. Thermal Eng. 179, 115682 (2020).

    Article  Google Scholar 

  19. L. Liu, X. Wang, M. Ge, and Y. Zhao, Experimental study on heat transfer and power consumption of low-pressure spray cooling, Appl. Thermal Eng. 184, 116253 (2021).

    Article  Google Scholar 

  20. N. Zhou, H. Feng, Y. Guo, H. Chen, W. Liu, H. Peng, Y. Lei, S. Deng, and Y. Xu, Experimental study on the spray cooling heat transfer performance and dimensionless correlations for ethylene glycol water solution, Appl. Thermal Eng. 214, 118824 (2022).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 12032020, 12072354 and 12102438), the Manned Space Program of China, the Strategic Priority Research Program on Space Science of Chinese Academy of Sciences, the Project funded by China Postdoctoral Science Foundation (Grant No. 2019M660812), and the Natural Science Foundation of Shandong Province (Grant No. ZR2018BA022).

Author information

Authors and Affiliations

Authors

Contributions

Longsheng Duan and Zhiwei Wang set out overall research objectives. Kewei Dong designed the research. Kewei Dong wrote the first draft of the manuscript. Kewei Dong set up the experiment set-up and processed the experiment data. Di Wu and Jia Wang helped organize the manuscript. Di Wu revised and edited the final version. Li Duan and Qi Kang provided financial support for the study. Jianlin Liu supervised the planning and execution of the research activities.

Corresponding authors

Correspondence to Jia Wang  (王佳), Jianlin Liu  (刘建林) or Longsheng Duan  (段隆盛).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, K., Wu, D., Duan, L. et al. Transient heat transfer characteristics in spray cooling. Acta Mech. Sin. 39, 322344 (2023). https://doi.org/10.1007/s10409-022-22344-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10409-022-22344-x

Navigation