Skip to main content
Log in

Theoretical research on the motion of spherical bubbles with surface tension

考虑表面张力的球泡运动的理论解研究

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

The Rayleigh-Plesset equation is the fundamental model of bubble dynamics and is widely used in the study of cavitation mechanisms. Since cavitation bubble often occurs at the micro-scale, the effect of surface tension will have an important influence on the bubble motion. Based on the Sundman transformation and Weierstrass elliptic function theory, this paper studies the Rayleigh-Plesset equation considering surface tension, and establishes the parametric theoretical solutions of vapor bubble and gas bubble respectively. The results show that the vapor-bubble and gas-bubble dynamic equations can be solved theoretically. Further, based on the theoretical solutions, the effects of the surface tension on the motion of vapor bubbles and gas bubbles are studied in detail. For the two types of bubbles, the influence of the surface tension on the bubble motion will increase gradually as the scale of the bubble gets smaller. Especially when the bubble scale is reduced to 10 µm, the effect of the surface tension becomes too significant to be negligible.

摘要

Rayleigh-Plesset方程是气泡动力学的基本模型, 被广泛应用于空化机理的研究中. 由于空化气泡经常发生在微观尺度上, 表面张力的影响将对气泡的运动产生重要的影响. 基于Sundman变换和Weierstrass椭圆函数理论, 研究了考虑表面张力的Rayleigh-Plesset方程, 并分别建立了蒸汽气泡和气泡的参数理论解. 结果表明, 蒸汽泡和气体泡动力学方程可以从理论上得到求解. 在理论解的基础上,进一步研究了表面张力对蒸汽气泡和气泡运动的影响. 对于这两种气泡, 随着气泡尺度的减小, 表面张力对气泡运动的影响会逐渐增大. 特别是当气泡尺度减小到10 μm时, 表面张力的影响变得更加显著, 不可忽略.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. L. Rayleigh, On the pressure developed in a liquid during the collapse of a spherical cavity, London Edinburgh Dublin Philos. Mag. J. Sci. 34, 94 (1970).

    Article  Google Scholar 

  2. J. P. Franc, The Rayleigh-Plesset equation: A simple and powerful tool to understand various aspects of cavitation, edited by L. d’Agostino, and M. V. Salvetti, Courses and Lectures-International Center For Mechanical Sciences (Springer, Vienna, 2007).

    Google Scholar 

  3. C. E. Brennen, Cavitation and Bubble Dynamics (Oxford University Press, Oxford, 1995).

    MATH  Google Scholar 

  4. A. R. Klotz, and K. Hynynen, Simulations of the Devin and Zudin modified Rayleigh-Plesset equations to model bubble dynamics in a tube, Tech. Acoust. 11, 1 (2010).

    Google Scholar 

  5. C. Browne, R. F. Tabor, D. Y. C. Chan, R. R. Dagastine, M. Ashok-kumar, and F. Grieser, Bubble coalescence during acoustic cavitation in aqueous electrolyte solutions, Langmuir 27, 12025 (2011).

    Article  Google Scholar 

  6. S. Khalid, B. Kappus, K. Weninger, and S. Putterman, Opacity and transport measurements reveal that dilute plasma models of sonoluminescence are not valid, Phys. Rev. Lett. 108, 104302 (2012).

    Article  Google Scholar 

  7. E. A. Neppiras, and B. E. Noltingk, Cavitation produced by ultrasonics: Theoretical conditions for the onset of cavitation, Proc. Phys. Soc. B 64, 1032 (2002).

    Article  Google Scholar 

  8. M. S. Plesset, and R. B. Chapman, Collapse of an initially spherical vapour cavity in the neighbourhood of a solid boundary, J. Fluid Mech. 47, 283 (1970).

    Article  Google Scholar 

  9. M. Ida, Multibubble cavitation inception, Phys. Fluids 21, 113302 (2009).

    Article  MATH  Google Scholar 

  10. D. Obreschkow, M. Bruderer, and M. Farhat, Analytical approximations for the collapse of an empty spherical bubble, Phys. Rev. E 85, 066303 (2012).

    Article  Google Scholar 

  11. P. Amore, and F. M. Fernández, Mathematical analysis of recent analytical approximations to the collapse of an empty spherical bubble, J. Chem. Phys. 138, 084511 (2013).

    Article  Google Scholar 

  12. Z. Wang, Y. P. Qin, and L. Zou, Analytical solutions of the Rayleigh-Plesset equation for N-dimensional spherical bubbles, Sci. China-Phys. Mech. Astron. 60, 104721 (2017).

    Article  Google Scholar 

  13. Z. Wang, Y. Qin, and L. Zou, A kind of analytical solution for the Rayleigh-Plesset equation in N-dimensions, AIP Conf. Proc. 1978, 47006 (2018).

    Google Scholar 

  14. L. X. Zhang, Q. Yin, and X. M. Shao, Theoretical and numerical studies on the bubble collapse in water (in Chinese), Chin. J. Hydrodyn. 27, 68 (2012).

    Google Scholar 

  15. R. A. Van Gorder, Dynamics of the Rayleigh-Plesset equation modelling a gas-filled bubble immersed in an incompressible fluid, J. Fluid Mech. 807, 478 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  16. N. A. Kudryashov, and D. I. Sinelshchikov, An extended equation for the description of nonlinear waves in a liquid with gas bubbles, Wave Motion 50, 351 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  17. N. A. Kudryashov, and D. I. Sinelshchikov, Analytical solutions of the Rayleigh equation for empty and gas-filled bubble, J. Phys. A-Math. Theor. 47, 405202 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  18. N. A. Kudryashov, and D. I. Sinelshchikov, Analytical solutions for problems of bubble dynamics, Phys. Lett. A 379, 798 (2016).

    Article  MathSciNet  Google Scholar 

  19. A. O. Maksimov, Symmetry in bubble dynamics, Commun. Nonlinear Sci. Numer. Simul. 9, 83 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  20. A. O. Maksimov, Symmetry of the Rayleigh equation and the analysis of nonlinear gas bubble oscillations in liquid, Acoust. Phys. 48, 713 (2002).

    Article  Google Scholar 

  21. S. C. Mancas, and H. C. Rosu, Evolution of spherical cavitation bubbles: Parametric and closed-form solutions, Phys. Fluids 28, 022009 (2016).

    Article  Google Scholar 

  22. M. R. Ali, and R. Sadat, Lie symmetry analysis, new group invariant for the (3+1)-dimensional and variable coefficients for liquids with gas bubbles models, Chin. J. Phys. 71, 539 (2021).

    Article  MathSciNet  Google Scholar 

  23. C. Yan, Y. Xu, P. Zhang, S. Kang, X. Zhou, and S. Zhu, Investigation of the gas bubble dynamics induced by an electric arc in insulation oil, Plasma Sci. Technol. 24, 044003 (2022).

    Article  Google Scholar 

  24. P. Pontes, R. Cautela, E. Teodori, A. S. Moita, A. Georgoulas, and A. L. N. Moreira, in Bubble dynamics and heat transfer on biphilic surfaces: Proceedings of 16th UK Heat Transfer Conference (Springer, Singapore, 2021).

    Book  Google Scholar 

  25. F. Asakura, A Model System of Mixed Ionized Gas Dynamics (Springer, Berlin, Heidelberg, 2021).

    Book  Google Scholar 

  26. Y. Huang, and T. Luo, Global solution of 3D irrotational flow for gas dynamics in thermal nonequilibrium, Ann. Inst. H. Poincaré Anal. Non Linéaire 37, 225 (2020).

    Article  MathSciNet  MATH  Google Scholar 

  27. M. van Meerkerk, C. Poelma, B. Hofland, and J. Westerweel, Gas flow dynamics over a plunging breaking wave prior to impact on a vertical wall, Eur. J. Mech.-B Fluids 91, 52 (2022).

    Article  MathSciNet  MATH  Google Scholar 

  28. Y. I. Kim, H. M. Yang, K. Y. Lee, and Y. S. Choi, Numerical investigation on blockage-related cavitation surge and pressure gain of a mixed-flow pump with influence of blade leading edge shape on suction performance, J. Fluids Eng. 144, 091205 (2022).

    Article  Google Scholar 

  29. H. Zhao, Y. Shi, and G. Pan, Numerical simulation of cavitation characteristics in high speed water entry of head-jetting underwater vehicle, J. Northwest. Polytech. Uni. 39, 810 (2021).

    Article  Google Scholar 

  30. B. Gca, A. Cc, and B. Vvv, Ultrasound- and hydrodynamic-cavitation assisted extraction in food processing, Innov. Food Process. Technol. 359 (2021).

  31. Y. Wan, M. Manfredi, A. Pasini, and Z. Spakovszky, Dynamic model-based identification of cavitation compliance and mass flow gain factor in rocket engine turbopump inducers, J. Eng. Gas Turbines Power 143, 021011 (2021).

    Article  Google Scholar 

  32. S. Moyo, and S. V. Meleshko, Application of the generalised sundman transformation to the linearisation of two second-order ordinary differential equations, J. Nonlinear Math. Phys. 18, 213 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  33. L. V. Ahlfors, Complex analysis: An introduction to the theory of analytic functions of one complex variable, Am. Math. Mon. 140, 331 (1966).

    MATH  Google Scholar 

  34. L. Ahlfors, Complex Analysis (China Machine Press, Beijing, 1990).

    Google Scholar 

Download references

Acknowledgements

This work was supported by the State Key Program of the National Natural Science of China (Grant No. 91852204) and the National Natural Science Foundation of China (Grant No. 11772298).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lingxin Zhang  (张凌新).

Additional information

Author contributions

Lingxin Zhang designed the research. Kaitao Guo and Di Zhao wrote the first draft of the manuscript. Kaitao Guo performed the theoretical analysis and processed the data. Di Zhao helped organize the manuscript. Lingxin Zhang and Di Zhao revised and edited the final version.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, K., Zhao, D. & Zhang, L. Theoretical research on the motion of spherical bubbles with surface tension. Acta Mech. Sin. 39, 322341 (2023). https://doi.org/10.1007/s10409-022-22341-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10409-022-22341-x

Keywords

Navigation