Skip to main content
Log in

Effects of osteocyte orientation on loading-induced interstitial fluid flow and nutrient transport in bone

骨细胞方向对负荷诱导的骨内液体流动和营养物质运输的影响

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

Changes in osteocyte spatial arrangement and orientation that are associated with aging and certain bone diseases have attracted much attention. The purpose of the current study is to demonstrate effects of osteocyte orientation on the deflection of fluid flow in bone by modeling osteocytes rotated by 0°, 30°, 45°, 60°, and 90° relative to the bone fluid flow axis. The lacuno-canalicular network was assumed to be regularly arranged and uniformly distributed and the osteon was defined as a representative cubic periodic unit cell (CPUC) at the microscale level. Calculation of canaliculi number and distribution around the osteocyte enabled estimation of osteon microstructural parameters toward the establishment of an osteon poroelastic finite element model to investigate specific loading-induced interstitial fluid flow and nutrient transport parameters in the bone under different boundary conditions and loading types. The results showed that osteocyte orientation under loading conditions approximating normal physiological loads markedly influenced predicted osteon maximum fluid pressure (p), fluid velocity (v), and fluid shear stress (τ) values. Moreover, results showing the nonuniform distribution of p and τ values within the osteon wall indicated that osteocyte orientation and canaliculi three-dimensional distribution were important parameters for predicting the degree of anisotropy of lacuno-canalicular system permeability, of anisotropy of lacuno-canalicular system permeability, while also demonstrating that osteocyte orientation had little effect on nutrient transport. Furthermore, loading type and lacuno-canalicular tortuosity effects on osteon fluid flow were greater than osteocyte orientation-associated effects. The results of this study may help researchers accurately quantify bone fluid flow behavior to enhance understanding of mechanotransduction mechanisms in bone.

摘要

与年龄或某些骨骼疾病相关的骨细胞空间排列方向的变化引起了研究者们的广泛关注. 本研究的目的是通过建立骨细胞相对于骨内流体流动轴偏转0°、30°、45°、60°和90°的骨单元多孔弹性力学模型, 证明骨细胞方向对骨内流体流动的影响. 我们假设骨陷窝-小管网络规则排列且均匀分布, 且将骨单元定义为由微观尺度水平上的代表性立方周期单元(CPUC)组成. 通过计算骨细胞周围骨小管的数量和3D分布来估算骨单元的微观结构参数(渗透率、孔隙率等), 并建立骨单元孔隙弹性有限元模型, 研究不同边界条件和载荷形式下负载诱导的骨内间质流体流动和骨内营养物质运输. 结果表明, 在接近正常生理活动的载荷条件下, 骨细胞方向对骨单元最大流体压力(p)、最大流体速度(v)和最大流体剪切应力(τ)都有显著的影响. p值和τ值在骨单元壁内呈现不均匀分布, 这说明骨细胞方向和骨小管三维分布是预测骨陷窝-小管系统渗透性各向异性程度的重要参数, 但骨细胞方向对骨内营养物质运输影响很小. 此外, 载荷形式和骨陷窝-小管弯曲度对骨单元的液体流动行为的影响大于骨细胞方向对其的影响. 这项研究的结果将有助于人们准确量化骨内液体流动行为, 并增强对骨的力传导机制的理解.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abbreviations

v :

Darcy fluid velocity

τ :

Fluid shear stress

CPUC:

Cubic periodic unit cell

r c :

The radius of the bone canaliculi

r o :

The radius of the osteocyte process

a 0 :

The radius of the pericellular fibers

Δ :

The effective spacing of the fibers of the pericellular matrix

q :

A dimensionless ratio between the radius of the bone canaliculus (rc) and the osteocyte process (ro)

γ :

A dimensionless length ratio between rc and the square root of the permeability of a single canaliculus \((\gamma=r_{c}/\sqrt{k_{\mathrm{p}}})\)

k p :

The permeability of the fiber-filled medium in a single canaliculus kp = 0.0572a 20 (Δ/a0)2.377

n i (i = x, y, z):

The number of canaliculi passing through each face of the CPUC perpendicular to the local osteocyte axes (x, y and z), respectively.

a, b, and c :

Semi-axes of the osteocyte lacunar ellipsoid

L :

The distance between the two lacunae, which is also the side length of CPUC

V L :

The unit volume

N Lac :

The number of the lacunae per unit volum

N :

The total number of the bone canaliculi N around each lacuna

θ :

The porosity of the lacuno-canalicular

L c :

The average length of the bone canaliculi

r Lac :

The average radius of lacunae in the radial direction

S x, S y, and S z :

The projected surface areas of the lacunar ellipsoid in the x, y, and z orientations, respectively

θ :

The osteocyte deflected θ around the x axis

K :

The permeability tensor

E r :

Radial drained Young’s modulus

E z :

Axial drained Young’s modulus

v z :

Axial drained Poisson’s ratio

M :

Biot’s modulus

α :

Biot’s effective coefficient

ρ S :

Solid density

ρ f :

Fluid density

μ :

Dynamic viscosity

R a :

Inner radius of osteon

R b :

Outer radius of osteon

C p :

Fluid compressibility

σ :

The total stress tensor

C :

The drained stiffness tensor

ε :

The total strain tensor

ζ :

The variation in fluid content

tr():

The trace operator

ρ :

The total density

ü :

The second derivative of the displacement

V :

The velocity vector

d :

The mean pore diameter

v r :

The interstitial fluid velocity

T :

The tortuosity of the flow path

w :

Harmonic displacement

f :

Harmonic frequency

References

  1. C. A. Schurman, S. W. Verbruggen, and T. Alliston, Disrupted osteocyte connectivity and pericellular fluid flow in bone with aging and defective TGF-β signaling, Proc. Natl. Acad. Sci. USA 118, e2023999118 (2021).

    Article  Google Scholar 

  2. T. H. Smit, Finite element models of osteocytes and their load-induced activation, Curr. Osteoporos. Rep. 20, 127 (2022).

    Article  Google Scholar 

  3. M. Martin, V. Sansalone, D. M. L. Cooper, M. R. Forwood, and P. Pivonka, Mechanobiological osteocyte feedback drives mechanostat regulation of bone in a multiscale computational model, Biomech. Model. Mechanobiol. 18, 1475 (2019).

    Article  Google Scholar 

  4. H. Kitaura, A. Marahleh, F. Ohori, T. Noguchi, W. R. Shen, J. Qi, Y. Nara, A. Pramusita, R. Kinjo, and I. Mizoguchi, Osteocyte-related cytokines regulate osteoclast formation and bone resorption, Int. J. Mol. Sci. 21, 5169 (2020).

    Article  Google Scholar 

  5. C. Yvanoff, and R. G. Willaert, Development of bone cell microarrays in microfluidic chips for studying osteocyte-osteoblast communication under fluid flow mechanical loading, Biofabrication 14, 025014 (2022).

    Google Scholar 

  6. L. Xu, X. Song, G. Carroll, and L. You, Novel in vitro microfluidic platform for osteocyte mechanotransduction studies, Integrative Biol. 12, 303 (2020).

    Article  Google Scholar 

  7. I. P. Geoghegan, D. A. Hoey, and L. M. McNamara, Integrins in osteocyte biology and mechanotransduction, Curr. Osteoporos. Rep. 17, 195 (2019).

    Article  Google Scholar 

  8. C. J. Chermside-Scabbo, T. L. Harris, M. D. Brodt, I. Braenne, B. Zhang, C. R. Farber, and M. J. Silva, Old mice have less transcriptional activation but similar periosteal cell proliferation compared to young-adult mice in response to in vivo mechanical loading, J. Bone Miner. Res. 35, 1751 (2020).

    Article  Google Scholar 

  9. T. Ganesh, L. E. Laughrey, M. Niroobakhsh, and N. Lara-Castillo, Multiscale finite element modeling of mechanical strains and fluid flow in osteocyte lacunocanalicular system, Bone 137, 115328 (2020).

    Article  Google Scholar 

  10. Y. Carter, C. D. L. Thomas, J. G. Clement, A. G. Peele, K. Hannah, and D. M. L. Cooper, Variation in osteocyte lacunar morphology and density in the human femur—a synchrotron radiation micro-CT study, Bone 52, 126 (2013).

    Article  Google Scholar 

  11. A. F. van Tol, V. Schemenz, W. Wagermaier, A. Roschger, H. Razi, I. Vitienes, P. Fratzl, B. M. Willie, and R. Weinkamer, The mechanoresponse of bone is closely related to the osteocyte lacunocanalicular network architecture, Proc. Natl. Acad. Sci. USA 117, 32251 (2020).

    Article  Google Scholar 

  12. W. L. Yu, X. G. Wu, H. P. Cen, Y. Guo, C. X. Li, Y. Q. Wang, Y. X. Qin, and W. Y. Chen, Study on the biomechanical responses of the loaded bone in macroscale and mesoscale by multiscale poroelastic FE analysis, Biomed. Eng. Online 18, 122 (2019).

    Article  Google Scholar 

  13. Y. Chen, W. Wang, S. Ding, X. Wang, Q. Chen, and X. Li, A multi-layered poroelastic slab model under cyclic loading for a single osteon, Biomed. Eng. Online 17, 97 (2018).

    Article  Google Scholar 

  14. W. Yu, X. Wu, C. Li, Y. Sun, M. Zhang, and W. Chen, Effect of osteocyte-lacunae shape and direction on the fluid flow behavior in osteon, Chin. J. Theor. Appl. Mech. 52, 843 (2020).

    Google Scholar 

  15. S. Weinbaum, S. C. Cowin, and Y. Zeng, A model for the excitation of osteocytes by mechanical loading-induced bone fluid shear stresses, J. Biomech. 27, 339 (1994).

    Article  Google Scholar 

  16. S. W. Verbruggen, T. J. Vaughan, and L. M. McNamara, Fluid flow in the osteocyte mechanical environment: A fluid-structure interaction approach, Biomech. Model. Mechanobiol. 13, 85 (2014).

    Article  Google Scholar 

  17. S. W. Verbruggen, T. J. Vaughan, and L. M. McNamara, Mechanisms of osteocyte stimulation in osteoporosis, J. Mech. Behav. Biomed. Mater. 62, 158 (2016).

    Article  Google Scholar 

  18. X. G. Wu, and W. Y. Chen, A hollow osteon model for examining its poroelastic behaviors: Mathematically modeling an osteon with different boundary cases, Eur. J. Mech.-A Solids 40, 34 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  19. G. C. Goulet, D. Coombe, R. J. Martinuzzi, and R. F. Zernicke, Poroelastic evaluation of fluid movement through the lacunocanalicular system, Ann. Biomed. Eng. 37, 1390 (2009).

    Article  Google Scholar 

  20. T. Beno, Y. J. Yoon, S. C. Cowin, and S. P. Fritton, Estimation of bone permeability using accurate microstructural measurements, J. Biomech. 39, 2378 (2006).

    Article  Google Scholar 

  21. T. J. Vaughan, S. W. Verbruggen, and L. M. McNamara, Are all osteocytes equal? Multiscale modelling of cortical bone to characterise the mechanical stimulation of osteocytes, Int. J. Numer. Meth. Biomed. Eng. 29, 1361 (2013).

    Article  Google Scholar 

  22. M. Benalla, P. E. Palacio-Mancheno, S. P. Fritton, L. Cardoso, and S. C. Cowin, Dynamic permeability of the lacunar-canalicular system in human cortical bone, Biomech. Model. Mechanobiol. 13, 801 (2013).

    Article  Google Scholar 

  23. D. Zhang, Oscillatory pressurization of an animal cell as a poroelastic spherical body, Ann. Biomed. Eng. 33, 1249 (2005).

    Article  Google Scholar 

  24. X. G. Wu, T. Zhao, X. H. Wu, J. L. Xie, K. J. Chen, H. M. Guo, C. X. Li, Y. Q. Wang, and W. Y. Chen, Interstitial fluid flow behavior in osteon wall under non-axisymmetric loading: A finite element study, J. Mech. Med. Biol. 18, 1840007 (2018).

    Article  Google Scholar 

  25. R. G. Bacabac, T. H. Smit, M. G. Mullender, S. J. Dijcks, J. J. W. A. Van Loon, and J. Klein-Nulend, Nitric oxide production by bone cells is fluid shear stress rate dependent, Biochem. Biophys. Res. Commun. 315, 823 (2004).

    Article  Google Scholar 

  26. J. You, C. E. Yellowley, H. J. Donahue, Y. Zhang, Q. Chen, and C. R. Jacobs, Substrate deformation levels associated with routine physical activity are less stimulatory to bone cells relative to loading-induced oscillatory fluid flow, J. Biomech. Eng. 122, 387 (2000).

    Article  Google Scholar 

  27. C. Price, X. Zhou, W. Li, and L. Wang, Real-time measurement of solute transport within the lacunar-canalicular system of mechanically loaded bone: Direct evidence for load-induced fluid flow, J. Bone Miner. Res. 26, 277 (2011).

    Article  Google Scholar 

  28. T. J. Vaughan, C. A. Mullen, S. W. Verbruggen, and L. M. McNamara, Bone cell mechanosensation of fluid flow stimulation: A fluid-structure interaction model characterising the role integrin attachments and primary cilia, Biomech. Model. Mechanobiol. 14, 703 (2015).

    Article  Google Scholar 

  29. E. J. Anderson, and M. L. Knothe Tate, Idealization of pericellular fluid space geometry and dimension results in a profound underprediction of nano-microscale stresses imparted by fluid drag on osteocytes, J. Biomech. 41, 1736 (2008).

    Article  Google Scholar 

  30. L. You, S. C. Cowin, M. B. Schaffler, and S. Weinbaum, A model for strain amplification in the actin cytoskeleton of osteocytes due to fluid drag on pericellular matrix, J. Biomech. 34, 1375 (2001).

    Article  Google Scholar 

  31. S. Scheiner, A. Théoval, P. Pivonka, D. W. Smith, and L. F. Bonewald, Investigation of nutrient transport mechanisms in the lacunaecanaliculi system, IOP Conf. Ser.-Mater. Sci. Eng. 10, 012129 (2010).

    Article  Google Scholar 

  32. S. Zhao, H. Liu, Y. Li, Y. Song, W. Wang, and C. Zhang, Numerical analysis of the flow field in the lacunar-canalicular system under different magnitudes of gravity, Med. Biol. Eng. Comput. 58, 509 (2020).

    Article  Google Scholar 

  33. C. Zhang, J. Cao, H. Zhu, H. Fan, L. Yang, and X. Duan, Endoscopic treatment of symptomatic foot and ankle bone cyst with 3D printing application, Biomed. Res. Int. 2020, 1 (2020).

    Article  Google Scholar 

  34. S. Chen, J. Xue, J. Hu, Q. Ding, L. Zhou, S. Feng, Y. Cui, S. Lü, and M. Long, Flow field analyses of a porous membrane-separated, double-layered microfluidic chip for cell co-culture, Acta Mech. Sin. 36, 754 (2020).

    Article  Google Scholar 

  35. J. Li, and H. Gong, Fatigue behavior of cortical bone: A review, Acta Mech. Sin. 37, 516 (2021).

    Article  Google Scholar 

  36. F. Ti, X. Chen, H. Yang, S. Liu, and T. J. Lu, A theory of mechanobiological sensation: Strain amplification/attenuation of coated liquid inclusion with surface tension, Acta Mech. Sin. 37, 145 (2021).

    Article  MathSciNet  Google Scholar 

  37. A. Li, and R. Sun, Role of interstitial flow in tumor migration through 3D ECM, Acta Mech. Sin. 36, 768 (2020).

    Article  Google Scholar 

  38. H. Gholipour, M. J. Kermani, and R. Zamanian, Coupled pore network model for the cathode gas diffusion layer in PEM fuel cells, Acta Mech. Sin. 37, 331 (2021).

    Article  MathSciNet  Google Scholar 

  39. P. Wen, X. Wei, and Y. Lin, A computational model for capturing the distinct in- and out-of-plane response of lipid membranes, Acta Mech. Sin. 37, 138 (2021).

    Article  MathSciNet  Google Scholar 

  40. L. Fan, S. Pei, X. Lucas Lu, and L. Wang, A multiscale 3D finite element analysis of fluid/solute transport in mechanically loaded bone, Bone Res. 4, 16032 (2016).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Department of Science and Technology of Jilin Province (Grant No. YDZJ202201-ZYTS568), the National Natural Science Foundation of China (Grant No. 82172593), and the Doctoral Program Foundation of Jilin Medical University (Grant No. JYBS2021025LK).

Author information

Authors and Affiliations

Authors

Contributions

Weilun Yu, Xuyang Huo, and Nianqiu Shi designed the research. Weilun Yu, Fengjian Yang, Xiaohang Yang, and Zhiyuan Chu wrote the first draft of the manuscript and formal analysis. Fengjian Yang, Xiaohang Yang, and Zhiyuan Chu set up the experiment set-up and processed the experiment data. Xiaogang Wu and Weiyi Chen helped inspect the manuscript. Haoting Liu revised and edited the final version.

Corresponding authors

Correspondence to Xuyang Huo  (霍旭阳) or Nianqiu Shi  (时念秋).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, W., Liu, H., Huo, X. et al. Effects of osteocyte orientation on loading-induced interstitial fluid flow and nutrient transport in bone. Acta Mech. Sin. 39, 622332 (2023). https://doi.org/10.1007/s10409-022-22332-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10409-022-22332-x

Navigation