Skip to main content
Log in

Net: discovering the turbulence model and applying for low Reynolds number turbulent channel flow

Net湍流模型研究及其在低雷诺数槽道流中的应用

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

We propose a physics informed deep learning neural network, termed Net, for discovering the closure model of Reynolds stress in Reynolds-averaged Navier-Stokes (RANS) equations. The Net consists of a traditional physics uninformed neural network and several physics informed equations, e.g., the formula of Reynolds stress, the transport equations of turbulence kinetic energy k and turbulence dissipation rate ε. A low Reynolds number k-ε correction for turbulent channel flow is considered as an example. Based on the Net, all model parameters of the RANS are calibrated simultaneously with the specified mathematical formula, through training the neural network with data from direct numerical simulation. The gained turbulence model is utilized in OpenFOAM, an open source computational fluid dynamics (CFD) code, and predicts reasonable good results for a turbulent channel flow with Reτ = 5200 and 2000.

摘要

我们提出了一种基于物理信息的深度学习网络(Net), 可用于RANS方程中发现封闭的湍流模型. Net由一个传统的典型神经网络结构和若干个基于物理信息的方程组成, 如雷诺应力方程、k方程和ε方程. 以低雷诺数下的槽道流动的湍流模型的修正为例,通过训练基于物理信息的神经网络, 模型参数得到了修正. 修正后的湍流模型参数应用于OpenFOAM软件进行计算, 能够非常好地预测Reτ = 5200 和2000下的槽道流动.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. J. Slotnick, A. Khodadoust, J. Alonso, D. Darmofal, W. Gropp, E. Lurie, and D. Mavriplis, CFD vision 2030 study: A path to revolutionary computational aerosciences, Langley Research Center, 2014.

  2. P. Spalart and S. Allmaras, in A one-equation turbulence model for aerodynamic flows: Proceedings of 30th Aerospace Sciences Meeting and Exhibit, American Institute of Aeronautics and Astronautics, Reno, 1992.

    Book  Google Scholar 

  3. B. E. Launder, and D. B. Spalding, The numerical computation of turbulent flows, Comput. Methods Appl. Mech. Eng. 3, 269 (1974).

    Article  Google Scholar 

  4. F. R. Menter, Two-equation eddy-viscosity turbulence models for engineering applications, AIAA J. 32, 1598 (1994).

    Article  Google Scholar 

  5. W. P. Jones, and B. E. Launder, The prediction of laminarization with a two-equation model of turbulence, Int. J. Heat Mass Transfer 15, 301 (1972).

    Article  Google Scholar 

  6. C. K. G. Lam, and K. Bremhorst, A modified form of the k-ε model for predicting wall turbulence, J. Fluids Eng. 103, 456 (1981).

    Article  Google Scholar 

  7. G. Dufour, J. B. Cazalbou, X. Carbonneau, and P. Chassaing, Assessing rotation/curvature corrections to eddy-viscosity models in the calculations of centrifugal-compressor flows, J. Fluids Eng. 130, (2008).

  8. P. R. Spalart, and M. Shur, On the sensitization of turbulence models to rotation and curvature, Aerosp. Sci. Tech. 1, 297 (1997).

    Article  Google Scholar 

  9. B. A. Pettersson Reif, P. A. Durbin, and A. Ooi, Modeling rotational effects in eddy-viscosity closures, Int. J. Heat Fluid Flow 20, 563 (1999).

    Article  Google Scholar 

  10. Y. Huang, and H. Ma, Extended intrinsic mean spin tensor for turbulence modelling in non-inertial frame of reference, Appl. Math. Mech.-Engl. Ed. 29, 1463 (2008).

    Article  MathSciNet  Google Scholar 

  11. W. Zhang, Z. Ma, Y. C. Yu, and H. X. Chen, Applied new rotation correction k-ω SST model for turbulence simulation of centrifugal impeller in the rotating frame of reference, J. Hydrodyn. 22, 393 (2010).

    Article  Google Scholar 

  12. F. Stern, R. V. Wilson, H. W. Coleman, and E. G. Paterson, Comprehensive approach to verification and validation of CFD simulations-Part 1: Methodology and procedures, J. Fluids Eng. 123, 793 (2001).

    Article  Google Scholar 

  13. R. V. Wilson, F. Stern, H. W. Coleman, and E. G. Paterson, Comprehensive approach to verification and validation of CFD simulationsPart 2: Application for Rans simulation of a cargo/container ship, J. Fluids Eng. 123, 803 (2001).

    Article  Google Scholar 

  14. J. Ling, A. Kurzawski, and J. Templeton, Reynolds averaged turbulence modelling using deep neural networks with embedded invariance, J. Fluid Mech. 807, 155 (2016).

    Article  MathSciNet  Google Scholar 

  15. H. Xiao, J. L. Wu, J. X. Wang, R. Sun, and C. J. Roy, Quantifying and reducing model-form uncertainties in Reynolds-averaged Navier-Stokes simulations: A data-driven, physics-informed Bayesian approach, J. Comput. Phys. 324, 115 (2016), arXiv: 1508.06315.

    Article  MathSciNet  Google Scholar 

  16. J. X. Wang, J. L. Wu, and H. Xiao, Physics-informed machine learning approach for reconstructing Reynolds stress modeling discrepancies based on DNS data, Phys. Rev. Fluids 2, 034603 (2017), arXiv: 1606.07987.

    Article  Google Scholar 

  17. Z. Zhang, X. Song, S. Ye, Y. Wang, C. Huang, Y. An, and Y. Chen, Application of deep learning method to Reynolds stress models of channel flow based on reduced-order modeling of DNS data, J. Hydrodyn. 31, 58 (2018).

    Article  Google Scholar 

  18. W. Zhang, L. Zhu, Y. Liu, and J. Kou, Machine learning methods for turbulence modeling in subsonic flows over airfoils (2018), arXiv: 1806.05904.

  19. J. Weatheritt, and R. Sandberg, A novel evolutionary algorithm applied to algebraic modifications of the RANS stress-strain relationship, J. Comput. Phys. 325, 22 (2016).

    Article  MathSciNet  Google Scholar 

  20. M. Schoepplein, J. Weatheritt, R. Sandberg, M. Talei, and M. Klein, Application of an evolutionary algorithm to LES modelling of turbulent transport in premixed flames, J. Comput. Phys. 374, 1166 (2018).

    Article  MathSciNet  Google Scholar 

  21. W. Zhang, B. Zhu, H. Xu, and Y. Wang, Applying extended intrinsic mean spin tensor in evolution algorithm for RANS modelling of turbulent rotating channel flow, J. Hydrodyn. 31, 1255 (2019).

    Article  Google Scholar 

  22. R. L. Thompson, L. E. B. Sampaio, F. A. V. de Bragança Alves, L. Thais, and G. Mompean, A methodology to evaluate statistical errors in DNS data of plane channel flows, Comput. Fluids 130, 1 (2016).

    Article  MathSciNet  Google Scholar 

  23. J. Wu, H. Xiao, R. Sun, and Q. Wang, Reynolds-averaged Navier-Stokes equations with explicit data-driven Reynolds stress closure can be ill-conditioned, J. Fluid Mech. 869, 553 (2019), arXiv: 1803.05581.

    Article  MathSciNet  Google Scholar 

  24. M. Raissi, A. Yazdani, and G. E. Karniadakis, Hidden fluid mechanics: Learning velocity and pressure fields from flow visualizations, Science 367, 1026 (2020).

    Article  MathSciNet  Google Scholar 

  25. X. Jin, S. Cai, H. Li, and G. E. Karniadakis, NSFnets (Navier-Stokes flow nets): Physics-informed neural networks for the incompressible Navier-Stokes equations, arXiv: 1808.08952 (2018).

  26. K. Shukla, P. C. D. Leoni, J. Blackshire, D. Sparkman, and G. E. Karniadakis, Physics-informed neural network for ultrasound nondestructive quantification of surface breaking cracks, arXiv: 2005.03596.

  27. M. Raissi, Z. Wang, M. S. Triantafyllou, and G. E. Karniadakis, Deep learning of vortex induced vibrations, arXiv: 1808.08952.

  28. Z. Wei, Z. Hui, and W. Yong, Physics-informed neural network for discovering the turbulent flow, arXiv: 2005.03596v1.

  29. W. Liu, J. Fang, S. Rolfo, C. Moulinec, and D. R. Emerson, An iterative machine-learning framework for RANS turbulence modeling, Int. J. Heat Fluid Flow 90, 108822 (2021).

    Article  Google Scholar 

  30. E. Dow and Q. Wang, in Quantification of structural uncertainties in the k-ω turbulence model: Proceedings of 52nd AIAA/ASME/ASCE/AHS/ASC Structures, structural dynamics and materials conference 19th AIAA/ASME/AHS adaptive structures conference, Denver, 2011.

  31. P. Ramachandran, Swish: A self-gated activation function, arXiv: 1710.05941v1.

  32. X. Glorot, A. Bordes, and Y. Bengio, in Deep sparse rectifier neural networks: Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics (PMLR, Fort Lauderdale, 2011), pp. 315–323.

    Google Scholar 

  33. D. P. Kingma and J. Ba, Adam: A method for stochastic optimization (2014), arXiv: 1412.6980.

  34. Y. Bengio, A. Courville, and P. Vincent, Representation learning: A review and new perspectives (2012), arXiv: 1206.5538.

  35. R. D. Moser and M. Lee, https://turbulence.oden.utexas.edu/ (2013).

  36. A. Hellsten, in Some improvements in menters k-ω SST turbulence model: Proedings of 29th AIAA, Fluid Dynamics Conference (American Institute of Aeronautics and Astronautics, 1998).

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 91852117), the foundation of National Key Laboratory of Science and Technology on Aerodynamic Design and Research (Grant No. 614220121040106), and Shanghai Rising-Star Program (Grant No. 19QC1400200)

Author information

Authors and Affiliations

Authors

Contributions

Bing Zhu designed the conceptualization of this research and do the funding acquisition of this research. Longfeng Hou did the technical investigation and the original draft writing of this work. Ying Wang offered the resources and did the editing of this article.

Corresponding author

Correspondence to Bing Zhu  (朱兵).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hou, L., Zhu, B. & Wang, Y. Net: discovering the turbulence model and applying for low Reynolds number turbulent channel flow. Acta Mech. Sin. 39, 322326 (2023). https://doi.org/10.1007/s10409-022-22326-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10409-022-22326-x

Navigation