Skip to main content
Log in

A simple a posteriori indicator for discontinuous Galerkin method on unstructured grids

非结构网格间断Galerkin方法的一种简单有效后验激波指示器

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

A simple and efficient troubled-cell indicator based on a posteriori limiting paradigm is proposed for the discontinuous Galerkin (DG) method on the triangular grids. The developed methodology utilizes discrete solution from different time levels in the von Neumann neighborhood to maintain the compactness of the DG schemes. Effective technique is suggested to provide further information about the troubled cells. Different limitation can then be applied to the resulting troubled cells. Favorable numerical characteristic including positivity-preserving and oscillation-suppressing can be achieved. The present indicator has been implemented with both the simple limiter such as the total variation bounded (TVB) limiter and more sophisticated limiter such as the Hermite weighted essentially non-oscillatory (HWENO) limiter. The resulting limiting strategy, compared with the minmod based TVB indicator, has been examined for DG schemes of up to fourth order of accuracy in solving the two dimensional Euler equations on the unstructured grids. Numerical results demonstrate the effectiveness and robustness of the current a posteriori indication method.

摘要

针对间断Galerkin (DG)方法的激波捕捉问题, 在三角形网格上提出了一种基于后验方法的简单有效的问题单元指示器. 方法利用了von Neumann单元中不同时刻的离散解来保持DG格式的紧凑性. 本文采用有效的技术来提供有关问题单元的进一步信息, 并且可以对不同的问题单元应用不同的限制方法, 因此可以获得良好的数值特性, 包括保正性质和振荡抑制性质. 本文采用了TVB限制器和Hermite WENO限制器, 对比了提出的指示器与TVB指示器的性能. 数值结果表明了当前后验激波指示器的有效性和鲁棒性.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. B. Cockburn, and C. W. Shu, The Runge-Kutta discontinuous Galerkin method for conservation laws V: Multidimensional systems, J. Comput. Phys. 141, 199 (1998).

    Article  MathSciNet  Google Scholar 

  2. B. Cockburn, G. Karniadakis, and C. W. Shu, The development of discontinuous Galerkin method, in: Discontinuous Galerkin Methods (Springer, Berlin, Heidelberg, 2000).

    Book  Google Scholar 

  3. J. Qiu, and C. W. Shu, A comparison of troubled-cell indicators for Runge-Kutta discontinuous Galerkin methods using weighted essentially nonoscillatory limiters, SIAM J. Sci. Comput. 27, 995 (2005).

    Article  MathSciNet  Google Scholar 

  4. M. Dumbser, O. Zanotti, R. Loubère, and S. Diot, A posteriori subcell limiting of the discontinuous Galerkin finite element method for hyperbolic conservation laws, J. Comput. Phys. 278, 47 (2014).

    Article  MathSciNet  Google Scholar 

  5. C. W. Shu, TVB uniformly high-order schemes for conservation laws, Math. Comp. 49, 105 (1987).

    Article  MathSciNet  Google Scholar 

  6. B. Cockburn, and C. W. Shu, TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws II: General framework, Math. Comput. 52, 411 (1989).

    MathSciNet  Google Scholar 

  7. R. Biswas, K. D. Devine, and J. E. Flaherty, Parallel, adaptive finite element methods for conservation laws, Appl. Numer. Math. 14, 255 (1994).

    Article  MathSciNet  Google Scholar 

  8. A. Burbeau, P. Sagaut, and C. H. Bruneau, A problem-independent limiter for high-order Runge-Kutta discontinuous Galerkin methods, J. Comput. Phys. 169, 111 (2001).

    Article  MathSciNet  Google Scholar 

  9. L. Krivodonova, Limiters for high-order discontinuous Galerkin methods, J. Comput. Phys. 226, 879 (2007).

    Article  MathSciNet  Google Scholar 

  10. J. Qiu, and C. W. Shu, Runge-Kutta discontinuous galerkin method using WENO limiters, SIAM J. Sci. Comput. 26, 907 (2005).

    Article  MathSciNet  Google Scholar 

  11. D. S. Balsara, C. Altmann, C. D. Munz, and M. Dumbser, A sub-cell based indicator for troubled zones in RKDG schemes and a novel class of hybrid RKDG+HWENO schemes, J. Comput. Phys. 226, 586 (2007).

    Article  MathSciNet  Google Scholar 

  12. H. Luo, J. D. Baum, and R. Löhner, A Hermite WENO-based limiter for discontinuous Galerkin method on unstructured grids, J. Comput. Phys. 225, 686 (2007).

    Article  MathSciNet  Google Scholar 

  13. J. Zhu, and J. Qiu, Hermite WENO schemes and their application as limiters for Runge-Kutta discontinuous Galerkin method, III: Unstructured meshes, J. Sci. Comput. 39, 293 (2009).

    Article  MathSciNet  Google Scholar 

  14. Z. H. Jiang, C. Yan, J. Yu, and W. Yuan, Hermite WENO-based limiters for high order discontinuous Galerkin method on unstructured grids, Acta Mech. Sin. 28, 241 (2012).

    Article  MathSciNet  Google Scholar 

  15. J. Zhu, X. Zhong, C. W. Shu, and J. Qiu, Runge-Kutta discontinuous Galerkin method using a new type of WENO limiters on unstructured meshes, J. Comput. Phys. 248, 200 (2013).

    Article  MathSciNet  Google Scholar 

  16. X. Zhong, and C. W. Shu, A simple weighted essentially nonoscillatory limiter for Runge-Kutta discontinuous Galerkin methods, J. Comput. Phys. 232, 397 (2013).

    Article  MathSciNet  Google Scholar 

  17. M. Dumbser, and R. Loubère, A simple robust and accurate a posteriori sub-cell finite volume limiter for the discontinuous Galerkin method on unstructured meshes, J. Comput. Phys. 319, 163 (2016).

    Article  MathSciNet  Google Scholar 

  18. M. Sonntag, and C. D. Munz, Efficient parallelization of a shock capturing for discontinuous Galerkin methods using finite volume sub-cells, J. Sci. Comput. 70, 1262 (2017).

    Article  MathSciNet  Google Scholar 

  19. F. Vilar, A posteriori correction of high-order discontinuous Galerkin scheme through subcell finite volume formulation and flux reconstruction, J. Comput. Phys. 387, 245 (2019).

    Article  MathSciNet  Google Scholar 

  20. P. Giri, and J. Qiu, A high-order Runge-Kutta discontinuous Galerkin method with a subcell limiter on adaptive unstructured grids for two-dimensional compressible inviscid flows, Int. J. Numer. Meth. Fluids 91, 367 (2019).

    Article  MathSciNet  Google Scholar 

  21. Z. H. Jiang, X. Deng, F. Xiao, C. Yan, J. Yu, and S. Lou, Hybrid discontinuous Galerkin/finite volume method with subcell resolution for shocked flows, AIAA J. 59, 2027 (2021).

    Article  Google Scholar 

  22. A. Harten, ENO schemes with subcell resolution, J. Comput. Phys. 83, 148 (1989).

    Article  MathSciNet  Google Scholar 

  23. A. Suresh, and H. T. Huynh, Accurate monotonicity-preserving schemes with Runge-Kutta time stepping, J. Comput. Phys. 136, 83 (1997).

    Article  MathSciNet  Google Scholar 

  24. W. J. Rider, and L. G. Margolin, Simple modifications of monotonicity-preserving limiter, J. Comput. Phys. 174, 473 (2001).

    Article  MathSciNet  Google Scholar 

  25. Z. Sun, S. Inaba, and F. Xiao, Boundary variation diminishing (BVD) reconstruction: A new approach to improve Godunov schemes, J. Comput. Phys. 322, 309 (2016).

    Article  MathSciNet  Google Scholar 

  26. M. J. Vuik, and J. K. Ryan, Multiwavelet troubled-cell indicator for discontinuity detection of discontinuous Galerkin schemes, J. Comput. Phys. 270, 138 (2014).

    Article  MathSciNet  Google Scholar 

  27. S. Clain, S. Diot, and R. Loubère, A high-order finite volume method for systems of conservation laws—multi-dimensional optimal order detection (MOOD), J. Comput. Phys. 230, 4028 (2011).

    Article  MathSciNet  Google Scholar 

  28. H. Luo, J. D. Baum, and R. Löhner, A discontinuous Galerkin method based on a Taylor basis for the compressible flows on arbitrary grids, J. Comput. Phys. 227, 8875 (2008).

    Article  MathSciNet  Google Scholar 

  29. L. Krivodonova, J. Xin, J. F. Remacle, N. Chevaugeon, and J. E. Flaherty, Shock detection and limiting with discontinuous Galerkin methods for hyperbolic conservation laws, Appl. Numer. Math. 48, 323 (2004).

    Article  MathSciNet  Google Scholar 

  30. Z. H. Jiang, C. Yan, and J. Yu, Efficient methods with higher order interpolation and MOOD strategy for compressible turbulence simulations, J. Comput. Phys. 371, 528 (2018).

    Article  MathSciNet  Google Scholar 

  31. X. Deng, Y. Shimizu, and F. Xiao, A fifth-order shock capturing scheme with two-stage boundary variation diminishing algorithm, J. Comput. Phys. 386, 323 (2019).

    Article  MathSciNet  Google Scholar 

  32. X. Deng, Z. H. Jiang, F. Xiao, and C. Yan, Implicit large eddy simulation of compressible turbulence flow with PnTm-BVD scheme, Appl. Math. Model. 77, 17 (2020).

    Article  MathSciNet  Google Scholar 

  33. L. Cheng, X. Deng, B. Xie, Y. Jiang, and F. Xiao, Low-dissipation BVD schemes for single and multi-phase compressible flows on unstructured grids, J. Comput. Phys. 428, 110088 (2021).

    Article  MathSciNet  Google Scholar 

  34. Y. Wan, N. Wang, L. Zhang, and Y. Gui, Applications of multidimensional schemes on unstructured grids for high-accuracy heat flux prediction, Acta Mech. Sin. 36, 57 (2020).

    Article  MathSciNet  Google Scholar 

  35. M. Y. Wang, S. A. Hashmi, Z. X. Sun, D. L. Guo, G. Vita, G. W. Yang, and H. Hemida, Effect of surface roughness on the aerodynamics of a high-speed train subjected to crosswinds, Acta Mech. Sin. 37, 1090 (2021).

    Article  Google Scholar 

  36. Q. Liu, Z. Luo, X. Deng, Y. Zhou, L. Wang, and P. Cheng, Vortical structures and density fluctuations analysis of supersonic forward-facing step controlled by self-sustaining dual synthetic jets, Acta Mech. Sin. 36, 1215 (2020).

    Article  Google Scholar 

  37. H. Ren, T. Jing, and J. Li, Study on cell size variation in overdriven gaseous detonations, Acta Mech. Sin. 37, 938 (2021).

    Article  Google Scholar 

  38. S. Tann, X. Deng, Y. Shimizu, R. Loubère, and F. Xiao, Solution property preserving reconstruction for finite volume scheme: A boundary variation diminishing+multidimensional optimal order detection framework, Int. J. Numer. Meth. Fluids 92, 603 (2020).

    Article  MathSciNet  Google Scholar 

  39. P. Woodward, and P. Colella, The numerical simulation of two-dimensional fluid flow with strong shocks, J. Comput. Phys. 54, 115 (1984).

    Article  MathSciNet  Google Scholar 

  40. M. Sun, and K. Takayama, The formation of a secondary shock wave behind a shock wave diffracting at a convex corner, Shock Waves 7, 287 (1997).

    Article  Google Scholar 

  41. X. Zhang, Y. Xia, and C. W. Shu, Maximum-principle-satisfying and positivity-preserving high order discontinuous Galerkin schemes for conservation laws on triangular meshes, J. Sci. Comput. 50, 29 (2012).

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 11702015 and 11721202). The authors acknowledge the support by the high performance computing (HPC) resources at Beihang University. The first author also acknowledges the support by the Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Contributions

Zhen-Hua Jiang and Chao Yan designed the research. Zhen-Hua Jiang wrote the first draft of the manuscript. Zhen-Hua Jiang and Jian Yu set up the experiment. Zhen-Hua Jiang processed the experiment data. Jian Yu helped organize the manuscript. Chao Yan and Zhen-Hua Jiang revised and edited the final version.

Corresponding author

Correspondence to Chao Yan  (闫超).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, ZH., Yan, C. & Yu, J. A simple a posteriori indicator for discontinuous Galerkin method on unstructured grids. Acta Mech. Sin. 39, 322296 (2023). https://doi.org/10.1007/s10409-022-22296-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10409-022-22296-x

Navigation