Skip to main content
Log in

Passive vibration reduction performance of a triple-magnet magnetic suspension dynamic vibration absorber under sinusoidal excitation

正弦激励下三磁铁磁悬浮动力吸振器的被动减振性能研究

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

A novel triple-magnet magnetic suspension dynamic vibration absorber (TMSDVA) is designed, modeled, and tested in this paper. First, the equivalent dynamics model of the TMSDVA cantilever system is established. Based on the equivalent magnetizing current theory, the calculation model of the magnetic force is derived. After that, we analyze the characteristics of the magnetic force. Then the dynamics equations are solved using the Runge-Kutta method. Through the analysis of simulation responses of the TMSDVA cantilever system under sinusoidal excitation, we find it necessary to adjust the damping coefficient of the TMSDVA properly, which can not only decrease the sensitivity of the vibration reduction effect to the excitation amplitude but also improve the vibration reduction effect of the TMSDVA overall. Next, the experiment is carried out to verify the correctness of the simulation results. Given all that, the TMSDVA has potential application value in the passive vibration reduction of engineering structures.

摘要

本文设计了一种新型的三磁铁磁悬浮动力吸振器(TMSDVA), 并进行了建模和测试. 首先建立了TMSDVA悬臂梁减振系统的等 效动力学模型. 基于等效磁化电流理论, 建立了非线性磁悬浮力的计算模型, 并分析了非线性磁悬浮力的特征. 然后用Runge-Kutta方法 求解系统在正弦激励下的动力学响应. 通过对仿真结果的分析发现, 适当调整TMSDVA的阻尼系数不仅可以降低TMSDVA的减振效果 对激励幅值的敏感性, 还可以整体提高TMSDVA的减振效果. 最后通过实验验证了理论分析的正确性. 综合来看, TMSDVA在工程结构 的被动减振方面具有潜在应用价值

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. G. W. Housner, L. A. Bergman, T. K. Caughey, A. G. Chassiakos, R. O. Claus, S. F. Masri, R. E. Skelton, T. T. Soong, B. F. Spencer, and J. T. P. Yao, Structural control: Past, present, and future, J. Eng. Mech. 123, 897 (1997).

    Article  Google Scholar 

  2. J. T. P. Yao, Concept of structural control, J. Struct. Div. 98, 1567 (1972).

    Article  Google Scholar 

  3. J. Xu, Advances of research on vibration control, Chin. Quarterly Mech. 36, 547 (2015).

    Google Scholar 

  4. Q. Xu, Application and progress of dynamic vibration absorber, Mech. Adv. Mater. Struct. 14, 12 (2019).

    Google Scholar 

  5. Y. Liu, D. Yu, H. Zhao, and X. Wen, Review of passive dynamic vibration absorbers, Chin. J. Mech. Eng. 43, 14 (2007).

    Article  Google Scholar 

  6. J. P. Den Hartog, Mechanical Vibrations (McGraw-Hall Book Company, New York, 1947).

    Google Scholar 

  7. J. Ormondroyd, and J. P. Den Hartog, The theory of the dynamic vibration absorber, J. Appl. Mech. 50, 9 (1928).

    Google Scholar 

  8. J. Fang, S. M. Wang, and Q. Wang, Optimal design of vibration absorber using minimax criterion with simplified constraints, Acta Mech. Sin. 28, 848 (2012).

    Article  MathSciNet  Google Scholar 

  9. N. D. Anh, and N. X. Nguyen, Research on the design of non-traditional dynamic vibration absorber for damped structures under ground motion, J. Mech. Sci. Technol. 30, 593 (2016).

    Article  MathSciNet  Google Scholar 

  10. H. Hu, and L. He, Online control of critical speed vibrations of a single-span rotor by a rotor dynamic vibration absorber at different installation positions, J. Mech. Sci. Technol. 31, 2075 (2017).

    Article  Google Scholar 

  11. R. E. Roberson, Synthesis of a nonlinear dynamic vibration absorber, J. Franklin Inst. Eng. Appl. Math. 254, 205 (1952).

    Article  MathSciNet  Google Scholar 

  12. S. S. Oueini, C. M. Chin, and A. H. Nayfeh, Dynamics of a cubic nonlinear vibration absorber, Nonlinear Dyn. 20, 283 (1999).

    Article  Google Scholar 

  13. D. Pun, and Y. B. Liu, On the design of the piecewise linear vibration absorber, Nonlinear Dyn. 22, 393 (2000).

    Article  Google Scholar 

  14. P. L. Walsh, and J. S. Lamancusa, A variable stiffness vibration absorber for minimization of transient vibrations, J. Sound Vib. 158, 195 (1992).

    Article  Google Scholar 

  15. A. F. Vakakis, Inducing passive nonlinear energy sinks in vibrating systems, J. Vib. Acoust. 123, 324 (2001).

    Article  Google Scholar 

  16. A. F. Vakakis, O. V. Gendelman, L. A. Bergman, and D. M. McFarland, Nonlinear Targeted Energy Transfer in Mechanical and Structural Systems (Springer-Verlag, New York, 2008).

    Google Scholar 

  17. E. Gourdon, N. A. Alexander, C. A. Taylor, C. H. Lamarque, and S. Pernot, Nonlinear energy pumping under transient forcing with strongly nonlinear coupling: Theoretical and experimental results, J. Sound Vib. 300, 522 (2007).

    Article  Google Scholar 

  18. Z. Zhang, H. Ding, Y. W. Zhang, and L. Q. Chen, Vibration suppression of an elastic beam with boundary inerter-enhanced nonlinear energy sinks, Acta Mech. Sin. 37, 387 (2021).

    Article  MathSciNet  Google Scholar 

  19. J. Zang, and L. Q. Chen, Complex dynamics of a harmonically excited structure coupled with a nonlinear energy sink, Acta Mech. Sin. 33, 801 (2017).

    Article  MathSciNet  Google Scholar 

  20. Z. Yan, S. A. Ragab, and M. R. Hajj, Passive control of transonic flutter with a nonlinear energy sink, Nonlinear Dyn. 91, 577 (2018).

    Article  Google Scholar 

  21. D. Qiu, S. Seguy, and M. Paredes, Tuned nonlinear energy sink with conical spring: Design theory and sensitivity analysis, J. Mech. Des. 140, 011404 (2018).

    Article  Google Scholar 

  22. Y. Zhang, and Y. Leng, Special behaviors of two interacting permanent magnets with large different sizes, Int. J. Appl. Electromagnetics Mech. 62, 315 (2020).

    Article  Google Scholar 

  23. S. Sun, Y. Leng, X. Su, Y. Zhang, X. Chen, and J. Xu, Performance of a novel dual-magnet tri-stable piezoelectric energy harvester subjected to random excitation, Energy Convers. Manage. 239, 114246 (2021).

    Article  Google Scholar 

  24. H. Yao, T. Wang, B. Wen, and B. Qiu, A tunable dynamic vibration absorber for unbalanced rotor system, J. Mech. Sci. Technol. 32, 1519 (2018).

    Article  Google Scholar 

  25. S. Benacchio, A. Malher, J. Boisson, and C. Touzé, Design of a magnetic vibration absorber with tunable stiffnesses, Nonlinear Dyn. 85, 893 (2016).

    Article  MathSciNet  Google Scholar 

  26. S. Lo Feudo, C. Touzé, J. Boisson, and G. Cumunel, Nonlinear magnetic vibration absorber for passive control of a multi-storey structure, J. Sound Vib. 438, 33 (2019).

    Article  Google Scholar 

  27. Y. Y. Chen, Z. C. Qian, W. Zhao, and C. M. Chang, A magnetic Bistable nonlinear energy sink for structural seismic control, J. Sound Vib. 473, 115233 (2020).

    Article  Google Scholar 

  28. X. Su, Y. Leng, S. Sun, X. Chen, and J. Xu, Theoretical and experimental investigation of a quad-stable piezoelectric energy harvester using a locally demagnetized multi-pole magnet, Energy Convers. Manage. 271, 116291 (2022).

    Article  Google Scholar 

  29. W. D. Xie, X. F. Gao, and W. H. Xu, Stability and nonlinear vibrations of a flexible pipe parametrically excited by an internal varying flow density, Acta Mech. Sin. 36, 206 (2020).

    Article  MathSciNet  Google Scholar 

  30. L. Qin, H. Qin, and J. T. Xing, Energy flow characteristics of friction-induced nonlinear vibrations in a water-lubricated bearing-shaft coupled system, Acta Mech. Sin. 37, 679 (2021).

    Article  MathSciNet  Google Scholar 

  31. T. Tan, Z. Yan, K. Ma, F. Liu, L. Zhao, and W. Zhang, Nonlinear characterization and performance optimization for broadband bistable energy harvester, Acta Mech. Sin. 36, 578 (2020).

    Article  MathSciNet  Google Scholar 

  32. Y. Wang, X. Li, and Y. Shen, Cluster oscillation and bifurcation of fractional-order Duffing system with two time scales, Acta Mech. Sin. 36, 926 (2020).

    Article  MathSciNet  Google Scholar 

  33. Y. Starosvetsky, and O. V. Gendelman, Vibration absorption in systems with a nonlinear energy sink: Nonlinear damping, J. Sound Vib. 324, 916 (2009).

    Article  Google Scholar 

  34. J. Yang, Y. P. Xiong, and J. T. Xing, Power flow behaviour and dynamic performance of a nonlinear vibration absorber coupled to a nonlinear oscillator, Nonlinear Dyn. 80, 1063 (2015).

    Article  Google Scholar 

  35. Z. Dong, J. Yang, H. Meng, and D. Chronopoulos, in Suppression of vibration transmission between oscillators coupled with an inerter-based joint: Proceedings of XI International Conference on Structural Dynamics, Athens, 2020.

  36. J. Yang, Y. P. Xiong, and J. T. Xing, Vibration power flow and force transmission behaviour of a nonlinear isolator mounted on a nonlinear base, Int. J. Mech. Sci. 115-116, 238 (2016).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 52275122 and 12132010).

Author information

Authors and Affiliations

Authors

Contributions

Xiaoyu Chen and Yonggang Leng designed the research. Xiaoyu Chen, Yonggang Leng, and Fei Sun wrote the first draft of the manuscript. Xiaoyu Chen and Yonggang Leng set up the experiment setup and processed the experiment data. Shuailing Sun, Xukun Su, and Junjie Xu helped organize the manuscript. Xiaoyu Chen, Yonggang Leng, Fei Sun, Xukun Su, and Junjie Xu revised and edited the final version.

Corresponding author

Correspondence to Yonggang Leng  (冷永刚).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Leng, Y., Sun, F. et al. Passive vibration reduction performance of a triple-magnet magnetic suspension dynamic vibration absorber under sinusoidal excitation. Acta Mech. Sin. 39, 522286 (2023). https://doi.org/10.1007/s10409-022-22286-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10409-022-22286-x

Navigation