Skip to main content
Log in

Unified 2D/3D bubble merger model for Rayleigh-Taylor mixing

适用于二维及三维瑞利-泰勒湍流混合的统一气泡融合模型

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

Statistical evolutions of the diameter d and height h of chaotic Rayleigh-Taylor (RT) bubbles are of fundamental importance for many natural phenomena and engineering applications. For problems evolving from multi-mode short-wave perturbations, numerous simulations and recent experiment (R. V. Morgan et al., 2020) reported a universal growth law for the two quantities. However, a self-consistent model in terms of simultaneously predicting the two quantities has not been well established. In this paper, based on semi-bounded idea and buoyancy-drag model, a unified bubble merger model for both two-dimensional (2D) and three-dimensional (3D) problems is established. The new model predicts that: (1) the averaged diameter of bubbles d expands self-similarly with aspect ratio βd/h ≈ (1+A)/2 and (1+A)/4 for 2D and 3D problems, respectively, where the rescaled density ratio A is the well-known Atwood number; (2) the height h grows quadratically with growth coefficient α ≡ h/(Agt2) ≈ 0.05 and 0.025 for 2D and 3D problems, respectively, where g is acceleration, and t is time. The predictions agree very well with previous experiments and simulations, shedding light on the understanding of turbulent RT mixing.

摘要

瑞利-泰勒(RT)湍流混合阶段的气泡统计直径d和高度h随时间的演化规律对许多自然现象和工程应用都至关重要. 对于由多模短波扰动演化而来的RT问题, 大量数值模拟和最新实验(R. V. Morgan et al., 2020)均表明, 气泡统计直径d和高度h具有普适性的增长规律. 但是, 到目前为止, 先前研究者仍然没有给出能够同时准确预测这两个特征量的自洽模型. 在本文中, 基于半约束思想和浮阻力模型, 我们建立了一个能够同时适用于二维(2D)及三维(3D)流动的统一气泡融合模型. 新模型表明: (1) 气泡平均直径d呈自相似增长, 相应的自相似结构参数βd/h ≈ (1+A)/2和(1+A)/4, 其中阿特伍德数A是密度比的函数; (2) 气泡高度h与时间呈二次增长关系, 其中二次增长系数αh/(Agt2) ≈ 0.05 (2D)和0.025 (3D), 其中g为加速度, t为时间. 结果表明, 新模型的预测结果与先前的实验和数值模拟结果一致, 对理解RT湍流混合具有重要意义.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. L. Rayleigh, Investigation of the character of the equilibrium of an incompressible heavy fluid of variable density, Proc. Lond. Math. Soc. s1–14, 170 (1882).

    Article  MathSciNet  Google Scholar 

  2. G. I. Taylor, The instability of liquid surfaces when accelerated in a direction perpendicular to their planes, I, Proc. R. Soc. Lond. 201, 192 (1950).

    MathSciNet  Google Scholar 

  3. Z. Li, L. Wang, J. Wu, and W. Ye, Numerical study on the laser ablative Rayleigh-Taylor instability, Acta Mech. Sin. 36, 789 (2020).

    Article  MathSciNet  Google Scholar 

  4. B. Cheng, J. Glimm, and D. H. Sharp, Dynamical evolution of Rayleigh-Taylor and Richtmyer-Meshkov mixing fronts, Phys. Rev. E 66, 036312 (2002).

    Article  MathSciNet  Google Scholar 

  5. Y. S. Zhang, Z. W. He, F. J. Gao, X. L. Li, and B. L. Tian, Evolution of mixing width induced by general Rayleigh-Taylor instability, Phys. Rev. E 93, 063102 (2016), arXiv: 1510.06977.

    Article  Google Scholar 

  6. D. Livescu, Numerical simulations of two-fluid turbulent mixing at large density ratios and applications to the Rayleigh-Taylor instability, Phil. Trans. R. Soc. A. 371, 20120185 (2013).

    Article  MathSciNet  Google Scholar 

  7. Y. Zhou, Rayleigh-Taylor and Richtmyer-Meshkov instability induced flow, turbulence, and mixing. I, Phys. Rep. 720–722, 1 (2017).

    MathSciNet  Google Scholar 

  8. Y. Zhang, Y. Ruan, H. Xie, and B. Tian, Mixed mass of classical Rayleigh-Taylor mixing at arbitrary density ratios, Phys. Fluids 32, 011702 (2020).

    Article  Google Scholar 

  9. G. Dimonte, D. L. Youngs, A. Dimits, S. Weber, M. Marinak, S. Wunsch, C. Garasi, A. Robinson, M. J. Andrews, P. Ramaprabhu, A. C. Calder, B. Fryxell, J. Biello, L. Dursi, P. MacNeice, K. Olson, P. Ricker, R. Rosner, F. Timmes, H. Tufo, Y. N. Young, and M. Zingale, A comparative study of the turbulent Rayleigh-Taylor instability using high-resolution three-dimensional numerical simulations: The Alpha-Group collaboration, Phys. Fluids 16, 1668 (2004).

    Article  Google Scholar 

  10. G. Dimonte, Dependence of turbulent Rayleigh-Taylor instability on initial perturbations, Phys. Rev. E 69, 056305 (2004).

    Article  Google Scholar 

  11. S. I. Abarzhi, A. K. Bhowmick, A. Naveh, A. Pandian, N. C. Swisher, R. F. Stellingwerf, and W. D. Arnett, Supernova, nuclear synthesis, fluid instabilities, and interfacial mixing, Proc. Natl. Acad. Sci. USA 116, 18184 (2019).

    Article  MathSciNet  Google Scholar 

  12. S. I. Abarzhi, D. L. Hill, A. Naveh, K. C. Williams, and C. E. Wright, Supernovae and the arrow of time, Entropy 24, 829 (2022).

    Article  MathSciNet  Google Scholar 

  13. M. A. Sandoval, W. R. Hix, O. E. B. Messer, E. J. Lentz, and J. A. Harris, Three-dimensional core-collapse supernova simulations with 160 isotopic species evolved to shock breakout, Astrophys. J. 921, 113 (2021), arXiv: 2106.01389.

    Article  Google Scholar 

  14. P. Amendt, Entropy generation from hydrodynamic mixing in inertial confinement fusion indirect-drive targets, Phys. Plasmas 28, 072701 (2021).

    Article  Google Scholar 

  15. R. W. Paddock, H. Martin, R. T. Ruskov, R. H. H. Scott, W. Garbett, B. M. Haines, A. B. Zylstra, R. Aboushelbaya, M. W. Mayr, B. T. Spiers, R. H. W. Wang, and P. A. Norreys, One-dimensional hydrodynamic simulations of low convergence ratio direct-drive inertial confinement fusion implosions, Phil. Trans. R. Soc. A. 379, 20200224 (2021).

    Article  Google Scholar 

  16. A. Casner, Recent progress in quantifying hydrodynamics instabilities and turbulence in inertial confinement fusion and high-energy-density experiments, Phil. Trans. R. Soc. A. 379, 20200021 (2021).

    Article  Google Scholar 

  17. K. I. Read, Experimental investigation of turbulent mixing by Rayleigh-Taylor instability, Phys. D-Nonlinear Phenom. 12, 45 (1984).

    Article  Google Scholar 

  18. E. George, J. Glimm, X. L. Li, A. Marchese, and Z. L. Xu, A comparison of experimental, theoretical, and numerical simulation Rayleigh-Taylor mixing rates, Proc. Natl. Acad. Sci. USA 99, 2587 (2002).

    Article  Google Scholar 

  19. D. L. Youngs, Rayleigh-Taylor mixing: Direct numerical simulation and implicit large eddy simulation, Phys. Scr. 92, 074006 (2017).

    Article  Google Scholar 

  20. U. Alon, J. Hecht, D. Ofer, and D. Shvarts, Power laws and similarity of Rayleigh-Taylor and Richtmyer-Meshkov mixing fronts at all density ratios, Phys. Rev. Lett. 74, 534 (1995).

    Article  Google Scholar 

  21. G. Dimonte, and M. Schneider, Density ratio dependence of Rayleigh-Taylor mixing for sustained and impulsive acceleration histories, Phys. Fluids 12, 304 (2000).

    Article  Google Scholar 

  22. Y. Zhang, W. Ni, Y. Ruan, and H. Xie, Quantifying mixing of Rayleigh-Taylor turbulence, Phys. Rev. Fluids 5, 104501 (2020).

    Article  Google Scholar 

  23. Y. Zhou, Rayleigh-Taylor and Richtmyer-Meshkov instability induced flow, turbulence, and mixing. II, Phys. Rep. 723–725, 1 (2017).

    MathSciNet  Google Scholar 

  24. Y. A. Kucherenko, L. I. Shibarshov, V. I. Chitaikin, S. I. Balabin, and A. P. Pylaev, in Experimental study of the gravitational turbulent mixing self-similar mode: Proceedings of the Third International Workshop on Physics Compressible Turbulent Mixing, Cambridge, 1991.

  25. Z. R. Zhou, Y. S. Zhang, and B. L. Tian, Dynamic evolution of Rayleigh-Taylor bubbles from sinusoidal, W-shaped, and random perturbations, Phys. Rev. E 97, 033108 (2018).

    Article  MathSciNet  Google Scholar 

  26. R. V. Morgan, and J. W. Jacobs, Experiments and simulations on the turbulent, rarefaction wave driven Rayleigh-Taylor instability, J. Fluids Eng. 142, 121101 (2020).

    Article  Google Scholar 

  27. O. Schilling, Progress on understanding Rayleigh-Taylor flow and mixing using synergy between simulation, modeling, and experiment, J. Fluids Eng. 142, 120802 (2020).

    Article  Google Scholar 

  28. A. Banerjee, Rayleigh-Taylor instability: A status review of experimental designs and measurement diagnostics, J. Fluids Eng. 142, 120801 (2020).

    Article  Google Scholar 

  29. D. L. Youngs, The density ratio dependence of self-similar Rayleigh-Taylor mixing, Phil. Trans. R. Soc. A. 371, 20120173 (2013).

    Article  MathSciNet  Google Scholar 

  30. P. Ramaprabhu, G. Dimonte, and M. J. Andrews, A numerical study of the influence of initial perturbations on the turbulent Rayleigh-Taylor instability, J. Fluid Mech. 536, 285 (2005).

    Article  Google Scholar 

  31. U. Alon, J. Hecht, D. Mukamel, and D. Shvarts, Scale invariant mixing rates of hydrodynamically unstable interfaces, Phys. Rev. Lett. 72, 2867 (1994).

    Article  Google Scholar 

  32. D. Oron, L. Arazi, D. Kartoon, A. Rikanati, U. Alon, and D. Shvarts, Dimensionality dependence of the Rayleigh-Taylor and Richtmyer-Meshkov instability late-time scaling laws, Phys. Plasmas 8, 2883 (2001).

    Article  Google Scholar 

  33. Y. Zhou, T. T. Clark, D. S. Clark, S. Gail Glendinning, M. Aaron Skinner, C. M. Huntington, O. A. Hurricane, A. M. Dimits, and B. A. Remington, Turbulent mixing and transition criteria of flows induced by hydrodynamic instabilities, Phys. Plasmas 26, 080901 (2019).

    Article  Google Scholar 

  34. J. Glimm, and D. H. Sharp, Chaotic mixing as a renormalization-group fixed point, Phys. Rev. Lett. 64, 2137 (1990).

    Article  MathSciNet  Google Scholar 

  35. U. Alon, D. Shvarts, and D. Mukamel, Scale-invariant regime in Rayleigh-Taylor bubble-front dynamics, Phys. Rev. E 48, 1008 (1993).

    Article  Google Scholar 

  36. Y. Elbaz, and D. Shvarts, Modal model mean field self-similar solutions to the asymptotic evolution of Rayleigh-Taylor and Richtmyer-Meshkov instabilities and its dependence on the initial conditions, Phys. Plasmas 25, 062126 (2018).

    Article  Google Scholar 

  37. B. Cheng, J. Glimm, and D. H. Sharp, A three-dimensional renor-malization group bubble merger model for Rayleigh-Taylor mixing, Chaos-An Interdiscip. J. Nonlinear Sci. 12, 267 (2002).

    Google Scholar 

  38. J. Hecht, U. Alon, and D. Shvarts, Potential flow models of Rayleigh-Taylor and Richtmyer-Meshkov bubble fronts, Phys. Fluids 6, 4019 (1994).

    Article  Google Scholar 

  39. W. Ni, Y. Zhang, Q. Zeng, and B. Tian, Bubble dynamics of Rayleigh-Taylor flow, AIP Adv. 10, 085220 (2020).

    Article  Google Scholar 

  40. E. E. Meshkov, On the structure of the mixing zone at an unstable contact boundary, J. Exp. Theor. Phys. 126, 126 (2018).

    Article  Google Scholar 

  41. Y. Zhou, G. B. Zimmerman, and E. W. Burke, Formulation of a two-scale transport scheme for the turbulent mix induced by Rayleigh-Taylor and Richtmyer-Meshkov instabilities, Phys. Rev. E 65, 056303 (2001).

    Article  Google Scholar 

  42. D. Layzer, On the instability of superposed fluids in a gravitational field, Astrophys. J. 122, 1 (1955).

    Article  MathSciNet  Google Scholar 

  43. V. N. Goncharov, Analytical model of nonlinear, single-mode, classical Rayleigh-Taylor instability at arbitrary Atwood numbers, Phys. Rev. Lett. 88, 134502 (2002).

    Article  Google Scholar 

  44. S. I. Sohn, Simple potential-flow model of Rayleigh-Taylor and Richtmyer-Meshkov instabilities for all density ratios, Phys. Rev. E 67, 026301 (2003).

    Article  Google Scholar 

  45. S. I. Abarzhi, K. Nishihara, and J. Glimm, Rayleigh-Taylor and Richtmyer-Meshkov instabilities for fluids with a finite density ratio, Phys. Lett. A 317, 470 (2003).

    Article  Google Scholar 

  46. Q. Zhang, and W. Guo, Universality of finger growth in two-dimensional Rayleigh-Taylor and Richtmyer-Meshkov instabilities with all density ratios, J. Fluid Mech. 786, 47 (2016).

    Article  MathSciNet  Google Scholar 

  47. R. Collins, The effect of a containing cylindrical boundary on the velocity of a large gas bubble in a liquid, J. Fluid Mech. 28, 97 (1967).

    Article  Google Scholar 

  48. D. H. Sharp, and J. A. Wheeler, Late stage of Rayleigh-Taylor instability, Report (Institute for Defense Analysis, 1961).

  49. D. H. Sharp, An overview of Rayleigh-Taylor instability, Phys. D-Nonlinear Phenom. 12, 3 (1984).

    Article  Google Scholar 

  50. J. C. V. Hansom, P. A. Rosen, T. J. Goldack, K. Oades, P. Fieldhouse, N. Cowperthwaite, D. L. Youngs, N. Mawhinney, and A. J. Baxter, Radiation driven planar foil instability and mix experiments at the AWE HELEN laser, Laser Part. Beams 8, 51 (1990).

    Article  Google Scholar 

  51. P. F. Linden, J. M. Redondo, and D. L. Youngs, Molecular mixing in Rayleigh-Taylor instability, J. Fluid Mech. 265, 97 (1994).

    Article  Google Scholar 

  52. G. Dimonte, and M. Schneider, Turbulent Rayleigh-Taylor instability experiments with variable acceleration, Phys. Rev. E 54, 3740 (1996).

    Article  Google Scholar 

  53. G. Dimonte, Spanwise homogeneous buoyancy-drag model for Rayleigh-Taylor mixing and experimental evaluation, Phys. Plasmas 7, 2255 (2000).

    Article  Google Scholar 

  54. B. L. Cheng, J. Glimm, D. Saltz, and D. H. Sharp, Boundary conditions for a two pressure two-phase flow model, Phys. D-Nonlinear Phenom. 133, 84 (1999).

    Article  MathSciNet  Google Scholar 

  55. Y. Zhou, and W. H. Cabot, Time-dependent study of anisotropy in Rayleigh-Taylor instability induced turbulent flows with a variety of density ratios, Phys. Fluids 31, 084106 (2019).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 12222203, 11972093 and 91852207).

Author information

Authors and Affiliations

Authors

Contributions

Author contributions Yousheng Zhang proposed the core idea of this study and wrote the first draft of the manuscript. Weidan Ni revised and edited the final version.

Corresponding author

Correspondence to Weidan Ni  (张又升).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Ni, W. Unified 2D/3D bubble merger model for Rayleigh-Taylor mixing. Acta Mech. Sin. 39, 322199 (2023). https://doi.org/10.1007/s10409-022-22199-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10409-022-22199-x

Keywords

Navigation