Skip to main content
Log in

Tensile behaviors of filaments with misfit of chirality

手性失配细长丝的拉伸行为

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

Slender chiral filaments are ubiquitous in both artificial and biological materials. Due to their chiral microstructures, chiral filaments usually exhibit favorable properties such as superior elasticity and unusual stretch-twist coupling deformation. However, how these chiral microstructures affect the elastic behavior of filaments remains unclear. In this paper, a refined Cosserat rod model with misfit or mismatching of chirality induced by inhomogeneous arrangement of chiral microstructures incorporated is developed. Using the refined rod model, the force-displacement relationships and variation of structural chirality during the tensile processes of two typical helical structures, i.e., single-strand helix and double-strand helix, are investigated. The results show that the misfit of chirality can lead to a bend-twist deformation with a high coupling degree, which makes the rod much “soft” when stretched. The chiral filaments undergo an unusual twist when stretched, corresponding to an obviously nonlinear variation of structural chirality. The work suggests that the misfit of chirality can be used to tune the elastic behavior of chiral filaments, which is helpful in guiding the design of flexible actuators and soft devices.

摘要

手性细长丝在人工和生物材料中普遍存在. 由于具有手性微结构, 手性丝通常表现出优异的弹性和拉伸-扭转耦合变形等性能. 然而, 手性微结构如何影响细长丝的弹性行为尚不清楚. 本文提出了一种考虑手性微结构和手性失配的精细弹性细杆模型. 基于此模型, 研究了单股螺旋和双股螺旋等手性丝组装结构在拉伸过程中的力-位移关系和结构手性变化. 结果表明, 手性失配会导致明显的弯曲-扭转耦合变形, 使杆在拉伸时柔性更大. 手性长丝在拉伸时还表现出类似DNA的反常扭转行为, 可用结构手性的非线性变化来解释. 该研究表明手性失配可用于调控手性丝的性能, 有助于柔性执行器和软机器等柔性器件的设计.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. E. Edens, J. A. Brozik, and D. J. Keller, Coarse-grained model DNA: Structure, sequences, stems, circles, hairpins, J. Phys. Chem. B 116, 14735 (2012).

    Article  Google Scholar 

  2. W. Lehman, M. J. Rynkiewicz, and J. R. Moore, A new twist on tropomyosin binding to actin filaments: Perspectives on thin filament function, assembly and biomechanics, J. Muscle Res. Cell Motil. 41, 23 (2019).

    Article  Google Scholar 

  3. Q. Guo, J. J. Dong, Y. Liu, X. H. Xu, Q. H. Qin, and J. S. Wang, Macroscopic and microscopic mechanical behaviors of climbing tendrils, Acta Mech. Sin. 35, 702 (2019).

    Article  Google Scholar 

  4. M. Nakamura, and T. Hashimoto, Mechanistic insights into plant chiral growth, Symmetry 12, 2056 (2020).

    Article  Google Scholar 

  5. M. Nedeljković, D. E. Sastre, and E. J. Sundberg, Bacterial flagellar filament: A supramolecular multifunctional nanostructure, Int. J. Mol. Sci. 22, 7521 (2021).

    Article  Google Scholar 

  6. Z. L. Zhao, B. Li, and X. Q. Feng, Handedness-dependent hyperelasticity of biological soft fibers with multilayered helical structures, Int. J. Non-Linear Mech. 81, 19 (2016).

    Article  Google Scholar 

  7. Z. L. Zhao, H. P. Zhao, J. S. Wang, Z. Zhang, and X. Q. Feng, Mechanical properties of carbon nanotube ropes with hierarchical helical structures, J. Mech. Phys. Solids 71, 64 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  8. X. Tang, K. Li, Y. Liu, D. Zhou, and J. Zhao, A soft crawling robot driven by single twisted and coiled actuator, Sens. Actuat. A-Phys. 291, 80 (2019).

    Article  Google Scholar 

  9. J. Gore, Z. Bryant, M. Nöllmann, M. U. Le, N. R. Cozzarelli, and C. Bustamante, DNA overwinds when stretched, Nature 442, 836 (2006).

    Article  Google Scholar 

  10. T. Lionnet, S. Joubaud, R. Lavery, D. Bensimon, and V. Croquette, Wringing out DNA, Phys. Rev. Lett. 96, 178102 (2006).

    Article  Google Scholar 

  11. J. Guo, Y. Yu, D. Zhang, H. Zhang, and Y. Zhao, Morphological hydrogel microfibers with mxene encapsulation for electronic skin, Research 2021, 7065907 (2021).

    Google Scholar 

  12. G. M. Grason, Braided bundles and compact coils: The structure and thermodynamics of hexagonally packed chiral filament assemblies, Phys. Rev. E 79, 041919 (2009).

    Article  MathSciNet  Google Scholar 

  13. P. Fratzl, Cellulose and collagen: from fibres to tissues, Curr. Opin. Colloid Interface Sci. 8, 32 (2003).

    Article  Google Scholar 

  14. V. Gopalan, and D. B. Litvin, Rotation-reversal symmetries in crystals and handed structures, Nat. Mater 10, 376 (2011).

    Article  Google Scholar 

  15. B. Đuričković, A. Goriely, and J. H. Maddocks, Twist and stretch of helices explained via the kirchhoff-love rod model of elastic filaments, Phys. Rev. Lett. 111, 108103 (2013).

    Article  Google Scholar 

  16. M. Upmanyu, H. L. Wang, H. Y. Liang, and R. Mahajan, Strain-dependent twist-stretch elasticity in chiral filaments, J. R. Soc. Interface. 5, 303 (2008).

    Article  Google Scholar 

  17. J. S. Wang, Y. H. Cui, T. Shimada, H. P. Wu, and T. Kitamura, Unusual winding of helices under tension, Appl. Phys. Lett. 105, 043702 (2014).

    Article  Google Scholar 

  18. H. Zhao, X. Gao, Q. Qin, and J. Wang, Formation of chiral morphologies of biological materials induced by chirality, Bioinspir. Biomim. 16, 066005 (2021).

    Article  Google Scholar 

  19. M. Kanik, S. Orguc, G. Varnavides, J. Kim, T. Benavides, D. Gonzalez, T. Akintilo, C. C. Tasan, A. P. Chandrakasan, Y. Fink, and P. Anikeeva, Strain-programmable fiber-based artificial muscle, Science 365, 145 (2019).

    Article  Google Scholar 

  20. Y. Yu, J. Guo, L. Sun, X. Zhang, and Y. Zhao, Microfluidic generation of microsprings with ionic liquid encapsulation for flexible electronics, Research 2019, 6906275 (2019).

    Google Scholar 

  21. D. Yan, J. Chang, H. Zhang, J. Liu, H. Song, Z. Xue, F. Zhang, and Y. Zhang, Soft three-dimensional network materials with rational biomimetic designs, Nat. Commun. 11, 1180 (2020).

    Article  Google Scholar 

  22. C. de Marco, C. C. J. Alcântara, S. Kim, F. Briatico, A. Kadioglu, G. de Bernardis, X. Chen, C. Marano, B. J. Nelson, and S. Pané, Indirect 3d and 4d printing of soft robotic microstructures, Adv. Mater. Technol. 4, 1900332 (2019).

    Article  Google Scholar 

  23. J. Lölsberg, A. Cinar, D. Felder, G. Linz, S. Djeljadini, and M. Wessling, Two-photon vertical-flow lithography for microtube synthesis, Small 15, 1901356 (2019).

    Article  Google Scholar 

  24. Y. Yu, F. Fu, L. Shang, Y. Cheng, Z. Gu, and Y. Zhao, Bioinspired helical microfibers from microfluidics, Adv. Mater. 29, 1605765 (2017).

    Article  Google Scholar 

  25. H. Yang, and M. Guo, Bioinspired polymeric helical and superhelical microfibers via microfluidic spinning, Macromol. Rapid Commun. 40, 1900111 (2019).

    Article  Google Scholar 

  26. Y. Yu, J. Guo, F. Bian, D. Zhang, and Y. Zhao, Bioinspired perovskite quantum dots microfibers from microfluidics, Sci. China Mater. 64, 2858 (2021).

    Article  Google Scholar 

  27. M. A. Meyers, P. Y. Chen, A. Y. M. Lin, and Y. Seki, Biological materials: Structure and mechanical properties, Prog. Mater. Sci. 53, 1 (2008).

    Article  Google Scholar 

  28. A. C. Neville, Biology of Fibrous Composites (Cambridge University Press, New York, 1993).

    Book  Google Scholar 

  29. J. S. Wang, G. Wang, X. Q. Feng, T. Kitamura, Y. L. Kang, S. W. Yu, and Q. H. Qin, Hierarchical chirality transfer in the growth of Towel Gourd tendrils, Sci. Rep. 3, 3102 (2013).

    Article  Google Scholar 

  30. J. F. Marko, and E. D. Siggia, Bending and twisting elasticity of DNA, Macromolecules 27, 981 (1994).

    Article  Google Scholar 

  31. R. S. Lakes, and R. L. Benedict, Noncentrosymmetry in micropolar elasticity, Int. J. Eng. Sci. 20, 1161 (1982).

    Article  MATH  Google Scholar 

  32. P. Sharma, Size-dependent elastic fields of embedded inclusions in isotropic chiral solids, Int. J. Solids Struct. 41, 6317 (2004).

    Article  MATH  Google Scholar 

  33. W. J. Drugan, and R. S. Lakes, Torsion of a cosserat elastic bar with square cross section: Theory and experiment, Z. Angew. Math. Phys. 69, 24 (2018).

    Article  MathSciNet  MATH  Google Scholar 

  34. R. S. Lakes, Experimental tests of rotation sensitivity in cosserat elasticity and in gravitation, Z. Angew. Math. Phys. 72, 131 (2021).

    Article  MathSciNet  Google Scholar 

  35. J. S. Wang, H. M. Ye, Q. H. Qin, J. Xu, and X. Q. Feng, Anisotropic surface effects on the formation of chiral morphologies of nanomaterials, Proc. R. Soc. A. 468, 609 (2012).

    Article  Google Scholar 

  36. F. Qiu, and B. J. Nelson, Magnetic helical micro- and nanorobots: Toward their biomedical applications, Engineering 1, 021 (2015).

    Article  Google Scholar 

  37. K. Xu, S. Xu, and F. Wei, Recent progress in magnetic applications for micro- and nanorobots, Beilstein J. Nanotechnol. 12, 744 (2021).

    Article  Google Scholar 

  38. A. B. Whitman, and C. N. DeSilva, An exact solution in a nonlinear theory of rods, J. Elast. 4, 265 (1974).

    Article  MATH  Google Scholar 

  39. Z. Zhou, P. Y. Lai, and B. Joós, Elasticity and stability of a helical filament, Phys. Rev. E 71, 052801 (2005).

    Article  Google Scholar 

  40. L. Dai, X. J. Huang, L. X. Dong, Q. Zhang, and L. Zhang, Mechanically tough, elastic and stable rope-like double nanohelices, Nanoscale 6, 9436 (2014).

    Article  Google Scholar 

  41. X. Y. Ji, M. Q. Zhao, F. Wei, and X. Q. Feng, Spontaneous formation of double helical structure due to interfacial adhesion, Appl. Phys. Lett. 100, 263104 (2012).

    Article  Google Scholar 

  42. Z. Rueger, and R. S. Lakes, Experimental study of elastic constants of a dense foam with weak cosserat coupling, J. Elast. 137, 101 (2019).

    Article  MathSciNet  MATH  Google Scholar 

  43. D. R. Reasa, and R. S. Lakes, Nonclassical chiral elasticity of the gyroid lattice, Phys. Rev. Lett. 125, 205502 (2020).

    Article  Google Scholar 

  44. X. Chen, S. Zhang, D. A. Dikin, W. Ding, R. S. Ruoff, L. Pan, and Y. Nakayama, Mechanics of a carbon nanocoil, Nano Lett. 3, 1299 (2003).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 12020101001, 12021002, 11872273, and 11890680) and Tianjin Research Program of Application Foundation and Advanced Technology (Grant No. 19JCYBJC19300).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianshan Wang  (王建山).

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Zhao, H., Yu, H. et al. Tensile behaviors of filaments with misfit of chirality. Acta Mech. Sin. 38, 621604 (2022). https://doi.org/10.1007/s10409-022-21604-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10409-022-21604-x

Navigation