Skip to main content
Log in

A mass abrasion model with the melting and cutting mechanisms during high-speed projectile penetration into concrete slabs

高速侵彻混凝土靶过程中耦合融化与切削机制的弹体质量侵蚀模型

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

In this study, ogive-nose projectile penetration into concrete slabs was tested at initial projectile impact velocities ranging from 1325.0 m/s to 1425.0 m/s. The depth of penetration and mass loss of the projectiles were measured, and the residual projectiles were recovered after the penetration tests. Scanning electron microscopy and metallographic microscopy of the microstructures were performed on various sections and outer surfaces of the projectiles taken from different locations of the residual projectiles, to analyze the intrinsic mechanisms of mass abrasion. The analysis results reveal that, during high-speed projectile penetration, projectile abrasion is caused by multiple mechanisms. Based on the cavity expansion theory, a projectile penetration model was established by considering the two main mass loss mechanisms observed in the microscopic tests. The theoretical predictions of the penetration depth, mass loss rate, and change of projectile head are consistent with the experimental results obtained both in this study and previous research.

摘要

本文开展了初始撞击速度为1325.0 m/s∼1425.0 m/s范围内的卵形弹体侵彻混凝土试验. 获取了弹体的侵彻深度及质量损失 等试验数据, 并对侵彻试验后的剩余弹体进行了回收. 通过对剩余弹体不同部位切片和外表面的微观观测, 分析了弹体质量侵蚀的 内在机理. 结果表明, 卵形弹体高速侵彻混凝土过程中的质量侵蚀现象是多种机制耦合造成的. 基于空腔膨胀理论和微观试验中观 测得到的两种主要侵蚀机理, 建立了计及质量侵蚀的弹体侵彻理论模型. 理论模型预测的弹体侵彻深度、质量损失率和弹头形状 变化与本文试验及前人试验结果吻合较好.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Ning, F. Meng, T. Ma, and X. Xu, Failure analysis of reinforced concrete slab under impact loading using a novel numerical method, Int. J. Impact Eng. 144, 103647 (2020).

    Article  Google Scholar 

  2. C. G. Chai, A. G. Pi, Q. M. Li, and F. L. Huang, Similarities in the penetration depth of concrete impacted by rigid projectiles, Acta Mech. Sin. 36, 1294 (2020).

    Article  Google Scholar 

  3. D. Yankelevsky, and V. Feldgun, The embedment of a high velocity rigid ogive nose projectile into a concrete target, Int. J. Impact Eng. 144, 103631 (2020).

    Article  Google Scholar 

  4. X. Zhang, H. Wu, S. Zhang, and F. L. Huang, Projectile penetration of reinforced concrete considering the effect of steel reinforcement: Experimental study and theoretical analysis, Int. J. Impact Eng. 144, 103653 (2020).

    Article  Google Scholar 

  5. J. Zhang, W. Chen, H. Hao, Z. Wang, Z. Wang, and X. Shu, Performance of concrete targets mixed with coarse aggregates against rigid projectile impact, Int. J. Impact Eng. 141, 103565 (2020).

    Article  Google Scholar 

  6. X. Huang, X. Kong, J. Hu, X. Zhang, Z. Zhang, and Q. Fang, The influence of free water content on ballistic performances of concrete targets, Int. J. Impact Eng. 139, 103530 (2020).

    Article  Google Scholar 

  7. D. Z. Yankelevsky, and V. R. Feldgun, Issues in modelling the penetration of thick targets by rigid long rods, Int. J. Impact Eng. 137, 103474 (2020).

    Article  Google Scholar 

  8. C. Liu, X. Zhang, H. Chen, J. Wang, H. Wei, and W. Xiong, Experimental and theoretical study on steel long-rod projectile penetration into concrete targets with elevated impact velocities, Int. J. Impact Eng. 138, 103482 (2020).

    Article  Google Scholar 

  9. D. Jiang, W. Q. Shi, R. Y. Huang, Z. L. Liu, M. R. Li, B. W. Qian, and G. Zhou, Scale effects and similarity laws on high/hypervelocity impact penetration, Sci. Sin.-Phys. Mech. Astron. 51, 104710 (2021).

    Article  Google Scholar 

  10. M. J. Forrestal, and D. Y. Tzou, A spherical cavity-expansion penetration model for concrete targets, Int. J. Solids Struct. 34, 4127 (1997).

    Article  MATH  Google Scholar 

  11. M. J. Forrestal, B. S. Altman, J. D. Cargile, and S. J. Hanchak, An empirical equation for penetration depth of ogive-nose projectiles into concrete targets, Int. J. Impact Eng. 15, 395 (1994).

    Article  Google Scholar 

  12. X. Zhang, R. Cao, D. Tan, and B. Wang, Different scale experiments of high velocity penetration with concrete targets, J. Appl. Mech. 80, 031802 (2013).

    Article  Google Scholar 

  13. J. Ning, W. Song, and G. Yang, Failure analysis of plastic spherical shells impacted by a projectile, Int. J. Impact Eng. 32, 1464 (2006).

    Article  Google Scholar 

  14. L. Guo, Y. He, X. F. Zhang, C. X. Pang, L. Qiao, and Z. W. Guan, Study mass loss at microscopic scale for a projectile penetration into concrete, Int. J. Impact Eng. 72, 17 (2014).

    Article  Google Scholar 

  15. L. L. He, X. W. Chen, and Z. H. Wang, Study on the penetration performance of concept projectile for high-speed penetration (CPHP), Int. J. Impact Eng. 94, 1 (2016).

    Article  Google Scholar 

  16. H. J. Wu, F. L. Huang, Y. N. Wang, and Z. P. Duan, Experimental investigation on projectile nose eroding effect of high-velocity penetration into concrete, Acta Armamentarii 33, 48 (2012).

    Google Scholar 

  17. H. Dong, Z. Liu, H. Wu, X. Gao, A. Pi, and F. Huang, Study on penetration characteristics of high-speed elliptical cross-sectional projectiles into concrete, Int. J. Impact Eng. 132, 103311 (2020).

    Article  Google Scholar 

  18. J. Ning, H. Ren, T. Guo, and P. Li, Dynamic response of alumina ceramics impacted by long tungsten projectile, Int. J. Impact Eng. 62, 60 (2013).

    Article  Google Scholar 

  19. H. Wu, X. W. Chen, Q. Fang, and L. L. He, Stability analyses of the mass abrasive projectile high-speed penetrating into concrete target. Part II: Structural stability analyses, Acta Mech. Sin. 30, 943 (2014).

    Article  Google Scholar 

  20. M. J. Forrestal, D. J. Frew, S. J. Hanchak, and N. S. Brar, Penetration of grout and concrete targets with ogive-nose steel projectiles, Int. J. Impact Eng. 18, 465 (1996).

    Article  Google Scholar 

  21. S. E. Jones, J. C. Foster, O. A. Toness, R. J. DeAngelis, and W. K. Rule, in An estimate for mass loss from high velocity steel penetrators: Proceedings of the ASME PVP-435 Conference on Thermal-Hydraulic Problems, (ASME, New York, 2002), pp. 227–237.

    Google Scholar 

  22. X. Xu, T. Ma, and J. Ning, Failure analytical model of reinforced concrete slab under impact loading, Constr. Building Mater. 223, 679 (2019).

    Article  Google Scholar 

  23. S. A. Silling, and M. J. Forrestal, Mass loss from abrasion on ogive-nose steel projectiles that penetrate concrete targets, Int. J. Impact Eng. 34, 1814 (2007).

    Article  Google Scholar 

  24. L. Guo, Y. He, X. Zhang, Y. He, J. Deng, and Z. Guan, Thermal-mechanical analysis on the mass loss of high-speed projectiles penetrating concrete targets, Eur. J. Mech.-A Solids 65, 159 (2017).

    Article  Google Scholar 

  25. O. Hao, and X. Chen, Modeling on mass loss and nose blunting of high-speed penetrator into concrete target, Int. J. Prot. Struct. 10, 3 (2019).

    Article  Google Scholar 

  26. X. Xu, T. Ma, H. Liu, and J. Ning, A three-dimensional coupled Euler-PIC method for penetration problems, Int. J. Numer. Methods Eng. 119, 737 (2019).

    Article  MathSciNet  Google Scholar 

  27. D. J. Frew, S. J. Hanchak, M. L. Green, and M. J. Forrestal, Penetration of concrete targets with ogive-nose steel rods, Int. J. Impact Eng. 21, 489 (1998).

    Article  Google Scholar 

  28. J. Feng, M. Song, W. Sun, and Z. P. Duan, Experimental investigation on projectile nose eroding effect of high-velocity penetration into concrete, ACTA Armamentarii 122, 305 (2018).

    Google Scholar 

  29. L. Guo, Y. He, N. S. Zhang, C. X. Pang, and H. Zheng, On the mass loss of a projectile based on the Archard theory, Explosion Shock Waves 34, 622 (2014).

    Google Scholar 

  30. L. L. He, X. W. Chen, and X. He, Parametric study on mass loss of penetrators, Acta Mech. Sin. 26, 585 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  31. H. Yang, X. Jin, J. Zhang, Z. Wang, and Z. Wang, Analysis on Mass loss of different sized projectiles penetrating into concrete targets, Int. J. Mech. Sci. 131–132, 683 (2017).

    Article  Google Scholar 

  32. H. M. Wen, Y. Yang, and T. He, Effects of abrasion on the penetration of ogival-nosed projectiles into concrete targets, Lat. Am. J. Solids Struct. 7, 413 (2010).

    Article  Google Scholar 

  33. L. L. He, X. W. Chen, and Y. M. Xia, Representation of nose blunting of projectile into concrete target and two reduction suggestions, Int. J. Impact Eng. 74, 132 (2014).

    Article  Google Scholar 

  34. J. Zhao, X. W. Chen, F. N. Jin, and Y. Xu, Depth of penetration of high-speed penetrator with including the effect of mass abrasion, Int. J. Impact Eng. 37, 971 (2010).

    Article  Google Scholar 

  35. X. W. Chen, L. L. He, and S. Q. Yang, Modeling on mass abrasion of kinetic energy penetrator, Eur. J. Mech.-A Solids 29, 7 (2010).

    Article  MATH  Google Scholar 

  36. R. N. Davis, A. M. Neely, and S. E. Jones, Mass loss and blunting during high-speed penetration, Proc. Inst. Mech. Eng. Part C-J. Mech. Eng. Sci. 218, 1053 (2004).

    Article  Google Scholar 

  37. G. M. Ren, H. Wu, Q. Fang, and X. Z. Kong, Parameters of Holmquist-Johnson-Cook model for high-strength concrete-like materials under projectile impact, Int. J. Prot. Struct. 8, 352 (2017).

    Article  Google Scholar 

  38. W. Wan, J. Yang, G. Xu, and Y. Liu, Determination and evaluation of holmquist-johnson-cook constitutive model parameters for ultra-highperformance concrete with steel fibers, Int. J. Impact Eng. 156, 103966 (2021).

    Article  Google Scholar 

  39. T. J. Holmquist, and G. R. Johnson, A computational constitutive model for glass subjected to large strains, high strain rates and high pressures, J. Appl. Mech. 78, 051003 (2011).

    Article  Google Scholar 

  40. S. J. Hanchak, M. J. Forrestal, E. R. Young, and J. Q. Ehrgott, Perforation of concrete slabs with 48 MPa (7 ksi) and 140 MPa (20 ksi) unconfined compressive strengths, Int. J. Impact Eng. 12, 1 (1992).

    Article  Google Scholar 

  41. N. Gebbeken, S. Greulich, and A. Pietzsch, Hugoniot properties for concrete determined by full-scale detonation experiments and flyer-plate-impact tests, Int. J. Impact Eng. 32, 2017 (2006).

    Article  Google Scholar 

  42. M. J. Forrestal, D. J. Frew, J. P. Hickerson, and T. A. Rohwer, Penetration of concrete targets with deceleration-time measurements, Int. J. Impact Eng. 28, 479 (2003).

    Article  Google Scholar 

  43. V. K. Luk, and M. J. Forrestal, Penetration into semi-infinite reinforced-concrete targets with spherical and ogival nose projectiles, Int. J. Impact Eng. 6, 291 (1987).

    Article  Google Scholar 

  44. E. Rabinowicz, L. A. Dunn, and P. G. Russell, A study of abrasive wear under three-body conditions, Wear 4, 345 (1961).

    Article  Google Scholar 

  45. G. R. Speich, and H Warlimont, Yield strength and transformation substructure of low-carbon martensite, Iron Steel Inst. 206, 385 (1968).

    Google Scholar 

  46. W. H Cook, and G. R Johnson, in A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures: Proceedings of the 7th International Symposium on Ballistics, Netherlands, 1983, pp. 541–547.

  47. X. Wang, Effects of constitutive parameters on adiabatic shear localization for ductile metal based on JOHNSON-COOK and gradient plasticity models, Trans. Nonferrous Met. Soc. China 16, 1362 (2006).

    Article  Google Scholar 

  48. J. Feng, W. Li, X. Wang, M. Song, H. Ren, and W. Li, Dynamic spherical cavity expansion analysis of rate-dependent concrete material with scale effect, Int. J. Impact Eng. 84, 24 (2015).

    Article  Google Scholar 

  49. S. Satapathy, Dynamic spherical cavity expansion in brittle ceramics, Int. J. Solids Struct. 38, 5833 (2015).

    Article  MATH  Google Scholar 

  50. H. J. Wu, F. L. Huang, Y. N. Wang, Z. P. Duan, and Y. Shan, Mass loss and nose shape change on ogive-nose steel projectiles during concrete penetration, Int. J. Nonlinear Sci. Numer. Simul. 13, 273 (2012).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 12032006) and Beijing Institute of Technology Research Fund Program for Young Scholars (Grant No. XSQD-202102011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangzhao Xu  (许香照).

Additional information

Author contributions

Jianguo Ning designed the research. Zhao Li and Xiangzhao Xu wrote the first draft of the manuscript. Zhao Li and Xiangzhao Xu set up the experiment set-up and processed the experiment data. Huilan Ren and Xiangzhao Xu helped organize the manuscript. Jianguo Ning, Huilan Ren, Zhao Li and Xiangzhao Xu revised and edited the final version.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ning, J., Ren, H., Li, Z. et al. A mass abrasion model with the melting and cutting mechanisms during high-speed projectile penetration into concrete slabs. Acta Mech. Sin. 38, 121597 (2022). https://doi.org/10.1007/s10409-022-21597-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10409-022-21597-x

En

Navigation