Skip to main content
Log in

Comparative study of amorphous and crystalline Zr-based alloys in response to nanosecond pulse laser ablation

非晶态与晶态锆基合金对纳秒脉冲激光烧蚀响应的对比研究

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

In this work, we comprehensively investigate the response of amorphous and crystalline Zr-based alloys under nanosecond pulse laser ablation. The in situ multiphysics processes and ablation morphologies of the two alloy targets are explored and compared. The results indicate that the dynamics of laser-induced plasma and shock waves obey the idea blast wave theory and are insensitive to the topological structures of targets. Both targets experience significant superheating and culminate in explosive boiling. This ablation process leads to the formation of a hierarchical structure in the resultant ablation crater: microdents covered by widespread nanovoids. The amorphous target shows shallower microdents and smaller nanovoids than their crystalline counterparts because the former has a smaller heat-affected zone and experiences a higher degree of superheating. The hierarchical structure can adjust the surface wettability of targets from initial hydrophilic to hydrophobic, showing an increase of the contact angle approximately 119% for amorphous alloy compared with the crystal approximately 64%. This work demonstrates that amorphous alloys have a better performance against nanosecond pulse laser ablation and provides a feasible and one-step method of wettability modification for either amorphous or crystalline alloys.

摘要

本文系统性地对比研究了非晶态与晶态锆基合金对纳秒脉冲激光的烧蚀响应, 主要关注两种合金靶的多物理烧蚀过程以及 靶表面烧蚀形貌. 结果表明, 激光诱导等离子体及其产生的冲击波动力学均符合理想爆轰波理论, 并且与靶材原子拓扑结构无关. 两种合金靶在纳秒激光烧蚀中均承受显著的过热并最终发生爆炸沸腾. 爆炸沸腾在靶表面形成一种多层级烧蚀形貌: 由纳米孔洞 广泛分布的微米凹坑. 相比于晶态靶, 非晶合金靶呈现出较浅的凹坑以及较小的纳米孔洞. 这是由于非晶合金靶在激光烧蚀中具有 较浅的热影响区, 但过热程度较高. 进一步研究发现, 这种微纳多层级烧蚀形貌可有效调节两种合金靶的表面润湿性能, 从初始亲 水性改变为疏水性; 非晶和晶态靶的表面接触角分别提高约119%和64%. 本工作表明非晶合金对纳秒脉冲激光烧蚀具有更好的防 护性能, 并为非晶态或晶态合金的润湿性调节提供了一种可行且便捷的方法.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Kim, D. Lee, S. Shin, and C. Lee, Phase evolution in Cu54Ni6Zr22Ti18 bulk metallic glass Nd:YAG laser weld, Mater. Sci. Eng.-A 434, 194 (2006).

    Article  Google Scholar 

  2. G. Wang, Y. J. Huang, M. Shagiev, and J. Shen, Laser welding of Ti40Zr25Ni3Cu12Be20 bulk metallic glass, Mater. Sci. Eng.-A 541, 33 (2012).

    Article  Google Scholar 

  3. D. T. A. Matthews, V. Ocelík, and J. T. M. de Hosson, Scratch test induced shear banding in high power laser remelted metallic glass layers, J. Mater. Res. 22, 460 (2007).

    Article  Google Scholar 

  4. D. T. A. Matthews, V. Ocelík, and J. T. M. de Hosson, Tribological and mechanical properties of high power laser surface-treated metallic glasses, Mater. Sci. Eng.-A 471, 155 (2007).

    Article  Google Scholar 

  5. H. Sun, and K. M. Flores, Microstructural analysis of a laser-processed Zr-based bulk metallic glass, Metall. Mat. Trans. A 41, 1752 (2010).

    Article  Google Scholar 

  6. H. Sun, and K. M. Flores, Spherulitic crystallization mechanism of a Zr-based bulk metallic glass during laser processing, Intermetallics 43, 53 (2013).

    Article  Google Scholar 

  7. Y. Shen, Y. Li, C. Chen, and H. L. Tsai, 3D printing of large, complex metallic glass structures, Mater. Des. 117, 213 (2017).

    Article  Google Scholar 

  8. S. Pauly, L. Löber, R. Petters, M. Stoica, S. Scudino, U. Kühn, and J. Eckert, Processing metallic glasses by selective laser melting, Mater. Today 16, 37 (2013).

    Article  Google Scholar 

  9. Y. Li, K. Zhang, Y. Wang, W. Tang, Y. Zhang, B. Wei, and Z. Hu, Abnormal softening of Ti-metallic glasses during nanosecond laser shock peening, Mater. Sci. Eng.-A 773, 138844 (2020).

    Article  Google Scholar 

  10. J. Fu, Y. Zhu, C. Zheng, R. Liu, and Z. Ji, Effect of laser shock peening on mechanical properties of Zr-based bulk metallic glass, Appl. Surf. Sci. 313, 692 (2014).

    Article  Google Scholar 

  11. H. Huang, M. Jiang, and J. Yan, The coupling effects of laser thermal shock and surface nitridation on mechanical properties of Zr-based metallic glass, J. Alloys Compd. 770, 864 (2019).

    Article  Google Scholar 

  12. X. Song, K. L. Xiao, X. Q. Wu, G. Wilde, and M. Q. Jiang, Nano-particles produced by nanosecond pulse laser ablation of a metallic glass in water, J. Non-Crystalline Solids 517, 119 (2019).

    Article  Google Scholar 

  13. Y. Jiao, E. Brousseau, X. Shen, X. Wang, Q. Han, H. Zhu, S. Bigot, and W. He, Investigations in the fabrication of surface patterns for wettability modification on a Zr-based bulk metallic glass by nanosecond laser surface texturing, J. Mater. Process. Tech. 283, 116714 (2020).

    Article  Google Scholar 

  14. Y. Qian, M. Jiang, Z. Zhang, H. Huang, and J. Yan, On the transformation between micro-concave and micro-convex in nanosecond laser ablation of a Zr-based metallic glass, J. Manufact. Processes 68, 1114 (2021).

    Article  Google Scholar 

  15. M. V. Rukosuyev, J. Lee, S. J. Cho, G. Lim, and M. B. G. Jun, One-step fabrication of superhydrophobic hierarchical structures by femtosecond laser ablation, Appl. Surf. Sci. 313, 411 (2014).

    Article  Google Scholar 

  16. J. Long, Z. He, C. Zhou, X. Xie, Z. Cao, P. Zhou, Y. Zhu, W. Hong, and Z. Zhou, Hierarchical micro- and nanostructures induced by nanosecond laser on copper for superhydrophobicity, ultralow water adhesion and frost resistance, Mater. Des. 155, 185 (2018).

    Article  Google Scholar 

  17. B. N. Chichkov, C. Momma, S. Nolte, F. Alvensleben, and A. Tünnermann, Femtosecond, picosecond and nanosecond laser ablation of solids, Appl. Phys. A 63, 109 (1996).

    Article  Google Scholar 

  18. X. Y. Wang, D. M. Riffe, Y. S. Lee, and M. C. Downer, Time-resolved electron-temperature measurement in a highly excited gold target using femtosecond thermionic emission, Phys. Rev. B 50, 8016 (1994).

    Article  Google Scholar 

  19. R. W. Schoenlein, W. Z. Lin, J. G. Fujimoto, and G. L. Eesley, Femtosecond studies of nonequilibrium electronic processes in metals, Phys. Rev. Lett. 58, 1680 (1987).

    Article  Google Scholar 

  20. W. Jia, Z. Peng, Z. Wang, X. Ni, and C. Wang, The effect of femtosecond laser micromachining on the surface characteristics and subsurface microstructure of amorphous FeCuNbSiB alloy, Appl. Surf. Sci. 253, 1299 (2006).

    Article  Google Scholar 

  21. I. Quintana, T. Dobrev, A. Aranzabe, G. Lalev, and S. Dimov, Investigation of amorphous and crystalline Ni alloys response to machining with micro-second and pico-second lasers, Appl. Surf. Sci. 255, 6641 (2009).

    Article  Google Scholar 

  22. F. Ma, J. Yang, J. XiaonongZhu, C. Liang, and H. Wang, Femtosecond laser-induced concentric ring microstructures on Zr-based metallic glass, Appl. Surf. Sci. 256, 3653 (2010).

    Article  Google Scholar 

  23. Y. Liu, M. Q. Jiang, G. W. Yang, Y. J. Guan, and L. H. Dai, Surface rippling on bulk metallic glass under nanosecond pulse laser ablation, Appl. Phys. Lett. 99, 191902 (2011).

    Article  Google Scholar 

  24. W. Zhang, G. Cheng, X. D. Hui, and Q. Feng, Abnormal ripple patterns with enhanced regularity and continuity in a bulk metallic glass induced by femtosecond laser irradiation, Appl. Phys. A 115, 1451 (2013).

    Article  Google Scholar 

  25. M. Q. Jiang, Y. P. Wei, G. Wilde, and L. H. Dai, Explosive boiling of a metallic glass superheated by nanosecond pulse laser ablation, Appl. Phys. Lett. 106, 021904 (2015).

    Article  Google Scholar 

  26. E. Williams, and E. B. Brousseau, Nanosecond laser processing of Zr41.2Ti13.8Cu12.5Ni10Be22.5 with single pulses, J. Mater. Process. Tech. 232, 34 (2016).

    Article  Google Scholar 

  27. M. Q. Jiang, X. Q. Wu, Y. P. Wei, G. Wilde, and L. H. Dai, Cavitation bubble dynamics during pulsed laser ablation of a metallic glass in water, Extreme Mech. Lett. 11, 24 (2017).

    Article  Google Scholar 

  28. T. T. P. Nguyen, R. Tanabe, and Y. Ito, Comparative study of the expansion dynamics of laser-driven plasma and shock wave in in-air and underwater ablation regimes, Opt. Laser Tech. 100, 21 (2018).

    Article  Google Scholar 

  29. X. Song, X. Q. Wu, K. L. Xiao, C. Li, H. Y. Wang, and M. Q. Jiang, Nanosecond laser ablation of a metallic glass in water: a high time-resolved imaging study, Philos. Mag. 100, 2708 (2020).

    Article  Google Scholar 

  30. H. Huang, N. Jun, M. Jiang, M. Ryoko, and J. Yan, Nanosecond pulsed laser irradiation induced hierarchical micro/nanostructures on Zr-based metallic glass substrate, Mater. Des. 109, 153 (2016).

    Article  Google Scholar 

  31. C. Zhao, Q. L. Guo, X. X. Li, N. Parab, K. Fezzaa, W. Tan, L. Chen, and T. Sun, Bulk-explosion-induced metal spattering during laser processing, Phys. Rev. X 9, 021052 (2019).

    Google Scholar 

  32. T. Sano, K. Takahashi, A. Hirose, and K. F. Kobayashi, Femtosecond laser ablation of Zr55Al10Ni5Cu30 bulk metallic glass, Mater. Sci. Forum 539, 1951 (2007).

    Article  Google Scholar 

  33. S. S. Harilal, G. V. Miloshevsky, P. K. Diwakar, N. L. LaHaye, and A. Hassanein, Experimental and computational study of complex shockwave dynamics in laser ablation plumes in argon atmosphere, Phys. Plasmas 19, 083504 (2012).

    Article  Google Scholar 

  34. X. Xu, Phase explosion and its time lag in nanosecond laser ablation, Appl. Surf. Sci. 197–198, 61 (2002).

    Article  Google Scholar 

  35. S. H. Jeong, R. Greif, and R. E. Russo, Propagation of the shock wave generated from excimer laser heating of aluminum targets in comparison with ideal blast wave theory, Appl. Surf. Sci. 127–129, 1029 (1998).

    Article  Google Scholar 

  36. V. A. Vorob’ev, M. F. Kanevskii, and S. Y. Chernov, Investigation of the dynamics of a laser-supported detonation wave using a self-consistent numerical model, J. Soviet Laser Res. 12, 269 (1991).

    Article  Google Scholar 

  37. T. Pezeril, G. Saini, D. Veysset, S. Kooi, P. Fidkowski, R. Radovitzky, and K. A. Nelson, Direct visualization of laser-driven focusing shock waves, Phys. Rev. Lett. 106, 214503 (2011).

    Article  Google Scholar 

  38. D. Marla, Y. Zhang, J. H. Hattel, and J. Spangenberg, Modeling of nanosecond pulsed laser processing of polymers in air and water, Model. Simul. Mater. Sci. Eng. 26, 055005 (2018).

    Article  Google Scholar 

  39. J. Wu, W. Wei, X. Li, S. Jia, and A. Qiu, Infrared nanosecond laser-metal ablation in atmosphere: Initial plasma during laser pulse and further expansion, Appl. Phys. Lett. 102, 164104 (2013).

    Article  Google Scholar 

  40. G. Ding, C. Li, A. Zaccone, W. H. Wang, H. C. Lei, F. Jiang, Z. Ling, and M. Q. Jiang, Ultrafast extreme rejuvenation of metallic glasses by shock compression, Sci. Adv. 5, eaaw6249 (2019).

    Article  Google Scholar 

  41. N. M. Bulgakova, and A. V. Bulgakov, Pulsed laser ablation of solids: transition from normal vaporization to phase explosion, Appl Phys A 73, 199 (2001).

    Article  Google Scholar 

  42. M. Yamasaki, S. Kagao, Y. Kawamura, and K. Yoshimura, Thermal diffusivity and conductivity of supercooled liquid in Zr41Ti14Cu12Ni10Be23 metallic glass, Appl. Phys. Lett. 84, 4653 (2004).

    Article  Google Scholar 

  43. T. Young, An essay on the cohesion of fluids, Phil. Trans. R. Soc. 95, 65 (1805).

    Article  Google Scholar 

  44. R. N. Wenzel, Resistance of solid surfaces to wetting by water, Ind. Eng. Chem. 28, 988 (1936).

    Article  Google Scholar 

  45. J. Ma, C. Yang, X. Liu, B. Shang, Q. He, F. Li, T. Wang, D. Wei, X. Liang, X. Wu, Y. Wang, F. Gong, P. Guan, W. Wang, and Y. Yang, Fast surface dynamics enabled cold joining of metallic glasses, Sci. Adv. 5, eaax7256 (2019).

    Article  Google Scholar 

  46. N. Chen, D. Wang, P. F. Guan, H. Y. Bai, W. H. Wang, Z. J. Zhang, H. Hahn, and H. Gleiter, Direct observation of fast surface dynamics in sub-10-nm nanoglass particles, Appl. Phys. Lett. 114, 043103 (2019).

    Article  Google Scholar 

  47. G. F. Ma, H. F. Zhang, H. Li, and Z. Q. Hu, Influence of structural relaxation on wetting behavior of molten In-Sn alloy on Cu40Zr44Al8Ag8 bulk metallic glass, J. Alloys Compd. 513, 273 (2012).

    Article  Google Scholar 

  48. A. B. D. Cassie, and S. Baxter, Wettability of porous surfaces, Trans. Faraday Soc. 40, 0546 (1944).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minqiang Jiang  (蒋敏强).

Additional information

This work was supported by the National Outstanding Youth Science Fund Project (Grant No. 12125206) of the National Natural Science Foundation of China (NSFC), the NSFC Basic Science Center for “Multiscale Problems in Nonlinear Mechanics” (Grant No. 11988102), and the NSFC (Grant Nos. 11972345 and 11790292).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, X., Wu, X., Dai, L. et al. Comparative study of amorphous and crystalline Zr-based alloys in response to nanosecond pulse laser ablation. Acta Mech. Sin. 38, 221480 (2022). https://doi.org/10.1007/s10409-022-09024-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10409-022-09024-x

Navigation