Skip to main content
Log in

Transient dynamic analysis for the ventilated supercavity under the action of tail jetting flow

尾部射流作用下通气超空泡的瞬态动力学分析

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

Ventilated cavitation could be applied to underwater vehicles to achieve a high drag-reduction ratio. The ventilated supercavity may experience deformation, fluctuation, and instability under the influence of the high-speed jetting flow generated by the propulsion system. This study focuses on understanding the transient dynamics of a ventilated supercavity with jetting flow at the tail. Experiments are performed in an open water tunnel system with a high degassing rate. The evolution of the gas-liquid interface under different jetting flow rates is recorded in detail. A compressible multiphase model coupled with shear stress turbulence (SST) and surface capturing models is adopted herein to study the flow pattern in depth. As the jet velocity increases from subsonic to sonic speed, the flow field presents three different modes that could be identified as the transparent cavity (TC), transparent cavity-jetting (TC-J), and deformed cavity-jetting (DC-J) modes. A new gas shedding scheme that couples twin-vortex shedding with surface fluctuation shedding is observed in the TC mode. The variations in the internal flow structure and the local pressure vibration are discussed in detail. The transition of the flow pattern with dimensionless jetting momentum ratio and kinetic energy ratio is obtained. The obtained results could provide valuable insights into the control of the ventilated supercavity.

摘要

通气空化可应用于水下航行器以实现高减阻率. 在推进系统产生的高速尾喷流的影响下, 通气超空泡可能会发生变形、波 动和不稳定. 本文重点针对尾射流作用下通气超空泡瞬态演化动力学机制开展研究, 实验在具有高除气率的开放式水洞系统中进 行, 详细记录了不同尾射流流量下气液界面的演变过程. 采用可压缩多相流模型, 结合剪切应力湍流模型和界面追踪方法, 对流场 进行了深入研究. 随着射流速度从亚音速增加到声速, 流场呈现三种不同的模式, 分别为透明空泡(TC)、透明空泡-射流(TC-J)和变 形空泡-射流(DC-J)模式. 在TC模式下观察到一种新的泄气机制, 该机制下双涡管泄气与界面震荡泄气耦合. 进一步对内部流场结 构变化和局部压力脉动规律进行了详细讨论, 得到流型随无量纲射流动量比和动能比的变化规律, 所得结果可为通气超空泡的控 制提供有价值的见解.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. L. Ceccio, Friction drag reduction of external flows with bubble and gas injection, Annu. Rev. Fluid Mech. 42, 183 (2010).

    Article  Google Scholar 

  2. T. J. Schauer, An experimental study of a ventilated supercavitating vehicle, Dissertation for the Master’s Degree, (University of Minnesota, Minnesota, 2003).

    Google Scholar 

  3. R. S. David, and B. C. Robert, in High-speed supercavitating vehicles: Proceedings of the AIAA Guidance, Navigation, and Control Conference and Exhibit (Keystone, Colorado, 2006).

    Google Scholar 

  4. D. J. Li, F. J. Li, Y. Z. Shi, J. J. Dang, and K. Luo, A novel hydrodynamic layout of front vertical rudders for maneuvering underwater supercavitating vehicles, Ocean Eng. 215, 107894 (2020).

    Article  Google Scholar 

  5. G. Wang, Q. Wu, and B. Huang, Dynamics of cavitation-structure interaction, Acta Mech. Sin. 33, 685 (2020).

    Article  Google Scholar 

  6. Y. Long, X. Long, and B. Ji, LES investigation of cavitating flows around a sphere with special emphasis on the cavitation-vortex interactions, Acta Mech. Sin. 36, 1238 (2020).

    Article  MathSciNet  Google Scholar 

  7. J. Chung, and Y. Cho, Ventilated supercavitation around a moving body in a still fluid: observation and drag measurement, J. Fluid Mech. 854, 367 (2018).

    Article  Google Scholar 

  8. S. Shao, A. Balakrishna, K. Yoon, J. Li, Y. Liu, and J. Hong, Effect of mounting strut and cavitator shape on the ventilation demand for ventilated supercavitation, Exp. Thermal Fluid Sci. 118, 110173 (2020).

    Article  Google Scholar 

  9. M. R. Erfanian, and M. Moghiman, Experimental investigation of critical air entrainment in ventilated cavitating flow for a forward facing model, Appl. Ocean Res. 97, 102089 (2020).

    Article  Google Scholar 

  10. R. N. Cox, and W. A. Clayden, in Air entrainment at the rear of a steady cavity: Proceedings of the N.P.L. symposium on cavitation in hydrodynamics (London, 1956).

  11. J. H. Spurk, On the gas loss from ventilated supercavities, Acta Mech. 155, 125 (2002).

    Article  Google Scholar 

  12. J. Guo, C. Lu, Y. Chen, and J. Cao, Study of ventilated cavity morphology in different gas leakage regime, J. Hydrodyn. 22, 778 (2010).

    Article  Google Scholar 

  13. M. P. Kinzel, J. W. Lindau, and R. F. Kunz, in Air entrainment mechanisms from artificial supercavities: Insight based on numerical simulations: Proceedings of the 7th international symposium on cavitation (University of Michigan, 2009).

  14. V. N. Semenenko. Artificial supercavitation. Physics and calculation, Von Karman Institute Lecture: Special Course on Supercavitating Flows. Brussels, 2001.

  15. L. Epshtein, in Characteristics of ventilated cavities and some scale effects: Proceedings of the international symposium IUTAM, unsteady water flow with high velocities (Nauka, 1973).

  16. R. Ganji Rad, R. Shafaghat, and R. Yousefi, Numerical investigation of the immersion ratio effects on ventilation phenomenon and also the performance of a surface piercing propeller, Appl. Ocean Res. 89, 251 (2019).

    Article  Google Scholar 

  17. I. J. Campbell, and D. V. Hilborne, in Air entrainment behind artificially inflated cavities: Proceedings of the second symposium on cavitation on naval hydrodynamics (Washington, 1958).

  18. E. Kawakami, and R. E. A. Arndt, Investigation of the behavior of ventilated supercavities, J. Fluids Eng. 133, 91305 (2011).

    Article  Google Scholar 

  19. A. Karn, R. E. A. Arndt, and J. Hong, An experimental investigation into supercavity closure mechanisms, J. Fluid Mech. 789, 259 (2016).

    Article  Google Scholar 

  20. T. Liu, B. Huang, G. Wang, M. Zhang, and D. Gao, Experimental investigation of the flow pattern for ventilated partial cavitating flows with effect of Froude number and gas entrainment, Ocean Eng. 129, 343 (2017).

    Article  Google Scholar 

  21. Y. N. Savchenko, and G. Y. Savchenko, Gas Flows in Ventilated Supercavities (Springer, 2012), pp. 115–126.

  22. Y. Wu, Y. Liu, S. Shao, and J. Hong, On the internal flow of a ventilated supercavity, J. Fluid Mech. 862, 1135 (2019).

    Article  MathSciNet  Google Scholar 

  23. P. Ausoni, M. Farhat, X. Escaler, E. Egusquiza, and F. Avellan, Cavitation influence on von Kármán vortex shedding and induced hydrofoil vibrations, J. Fluids Eng. 129, 966 (2007).

    Article  Google Scholar 

  24. Z. Wang, B. Huang, M. Zhang, G. Wang, and X. Zhao, Experimental and numerical investigation of ventilated cavitating flow structures with special emphasis on vortex shedding dynamics, Int. J. Multiphase Flow 98, 79 (2018).

    Article  Google Scholar 

  25. E. V. Paryshev, Approximate mathematical models in high-speed hydrodynamics, J. Eng. Math. 55, 41, (2006).

    Article  MathSciNet  Google Scholar 

  26. M. Kinzel, M. Moeny, M. Krane, and I. Kirschner, in Jet-supercavity interaction: Insights from CFD: Proceedings of the 9th international symposium on cavitation, CAV 2015 (Lausanne, 2015).

  27. M. Moeny, M. Krane, I. Kirschner, and M. Kinzel, in Jet-supercavity interaction: Insights from experiments: Proceedings of the 9th international symposium on cavitation, CAV 2015 (Lausanne, 2015).

  28. I. Kirschner, M. Moeny, M. Krane, and M. Kinzel, in Jet-supercavity interaction: Insights from physics analysis: Proceedings of the 9th international symposium on cavitation, CAV 2015 (Lausanne, 2015).

  29. M. P. Kinzel, M. H. Krane, I. N. Kirschner, and M. J. Moeny, A numerical assessment of the interaction of a supercavitating flow with a gas jet, Ocean Eng. 136, 304 (2017).

    Article  Google Scholar 

  30. Q. Zhang, Analysis and experimental study on the tail flow field characteristics of the super high speed vehicles, Dissertation for the Doctoral Degree, (Northwestern Polytechnical University, Xi’an, 2006).

    Google Scholar 

  31. F. Xu, L. Zhai, and Y. Zheng, Quantum tunneling dynamics in symmetrical driven double well system based on Husimi representation, Physica A-Statistical Mech. Its Appl. 507, 67 (2018).

    Article  MathSciNet  Google Scholar 

  32. M. Xiang, X. Zhao, and H. Zhou, Transient dynamic analysis for the submerged gas jet in flowing water, Eur. J. Mech. B Fluids 85, 351 (2021).

    Article  Google Scholar 

  33. E. L. Amromin, and R. E. A. Arndt, Analysis of influence of cavity content on flow pulsations, Int. J. Multiphase Flow 110, 108 (2019).

    Article  Google Scholar 

  34. A. Bourlioux, in A coupled level-set volume-of-fluid method for tracking material interfaces: Proceedings of the 6th annual interntional symposium on computational fluid dynamics (Lake Tahoe, 1995).

  35. M. Sussman, and E. G. Puckett, A coupled level set and volume-of-fluid method for computing 3D and axisymmetric incompressible two-phase flows, J. Comput. Phys. 162, 301 (2000).

    Article  MathSciNet  Google Scholar 

  36. F. R. Menter, Two-Equation Eddy-Viscosity turbulence models for engineering applications, AIAA J. 32, 1598 (1994).

    Article  Google Scholar 

  37. W. Zou, L. Xue, B. Wang, and X. Xiang, Gas flows and losses inside high-speed ventilated supercavitating flows, Ocean Eng. 164, 65 (2018).

    Article  Google Scholar 

  38. M. Tekavčič, B. Končar, and I. Kljenak, Three-dimensional simulations of liquid waves in isothermal vertical churn flow with Open-FOAM, Exp. Comput. Multiphase Flow 1, 300 (2019).

    Article  Google Scholar 

  39. R. I. Issa, Solution of the implicitly discretised fluid flow equations by operator-splitting, J. Comput. Phys. 62, 40 (1986).

    Article  MathSciNet  Google Scholar 

  40. T. J. Barth, and D. Jespersen, in The design and application of upwind schemes on unstructured meshes: Proceedings of the AIAA 27th aerospace sciences meeting (Reno, 1989).

  41. L. A. Epshtein, Methods of Theory of Dimensionality and Similarity in Problems of Ship Hydromechanics (Sudostroenie Publishing House, Leningrad, 1970).

    Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Grant Nos. 52176164 and 51776221) and the Research Project Foundation of National University of Defense Technology (Grant No. ZK 18-02-07).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Houcun Zhou  (周后村).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiang, M., Zhou, H., Zhao, X. et al. Transient dynamic analysis for the ventilated supercavity under the action of tail jetting flow. Acta Mech. Sin. 38, 321365 (2022). https://doi.org/10.1007/s10409-022-09017-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10409-022-09017-8

Navigation