Skip to main content
Log in

Patient-specific modeling of left ventricle mechanics

患者特定的左心室力学建模

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

We present a computational framework for the study of cardiac motion. The bio-mechanical model captures the passive and active properties of the cardiac tissue as well as the fiber architecture. We focus on the analysis of deformations of a beating left ventricle (LV), comparing numerical simulations with real data acquired by echocardiography. The goal is to determine the clinical relevance of the LV strains pattern and to investigate the relationships between that pattern and the arrangement of myocardial fibers. The proposed framework could in principle be used for a wide range of clinical applications.

摘要

我们提出了一个研究心脏运动的计算框架. 生物力学模型捕捉了心脏组织以及纤维结构的被动和主动特性. 我们专注于分析 搏动左心室(LV)的变形, 用超声心动图获得的真实数据进行数值模拟. 目的是确定LV菌株模式的临床相关性, 并调查其关系在这种模 式和心肌纤维的排列之间. 拟议的框架原则上可用于广泛的临床应用.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. G. Pedrizzetti, E. Kraigher-Krainer, A. De Luca, G. Caracciolo, J. O. Mangual, A. Shah, L. Toncelli, F. Domenichini, G. Tonti, G. Galanti, P. P. Sengupta, J. Narula, and S. Solomon, Functional strain-line pattern in the human left ventricle. Phys. Rev. Lett. 109, 048103 (2012).

    Article  Google Scholar 

  2. S. Gabriele, P. Nardinocchi, and V. Varano, Evaluation of the strain-line patterns in a human left ventricle: A simulation study. Comput. Methods Biomech. Biomed. Eng. 18, 790 (2015).

    Article  Google Scholar 

  3. A. Evangelista, S. Gabriele, P. Nardinocchi, P. Piras, P. E. Puddu, L. Teresi, C. Torromeo, and V. Varano, A comparative analysis of the strain-line pattern in the human left ventricle: Experiments vs modelling. Comput. Methods Biomech. Biomed. Eng.-Imag. Visualiz. 4, 164 (2016).

    Article  Google Scholar 

  4. S. Lee, S. Choi, S. Kim, Y. Jeong, K. Lee, S. H. Hur, S. R. Lee, E. J. Lee, M. J. Sin, N. Kim, and J. M. Song, Validation of three-dimensional echocardiographic principal strain analysis for assessing left ventricular contractility: An animal study. Med. Phys. 46, 2137 (2019).

    Article  Google Scholar 

  5. R. H. Anderson, S. Y. Ho, D. Sanchez-Quintana, K. Redmann, and P. P. Lunkenheimer, Heuristic problems in defining the three-dimensional arrangement of the ventricular myocytes. Anat. Rec. 288A, 579 (2006).

    Article  Google Scholar 

  6. M. Smerup, E. Nielsen, P. Agger, J. Frandsen, P. Vestergaard-Poulsen, J. Andersen, J. Nyengaard, M. Pedersen, S. Ringgaard, V. Hjortdal, P. P. Lunkenheimer, and R. H. Anderson, The three-dimensional arrangement of the myocytes aggregated together within the mammalian ventricular myocardium. Anat. Rec. 292, 1 (2009).

    Article  Google Scholar 

  7. P. Agger, and R. S. Stephenson, Assessing myocardial architecture: The challenges and controversies. J. Cardiovasc. Dev. Dis. 7, 47 (2020).

    Article  Google Scholar 

  8. V. Varano, P. Piras, S. Gabriele, L. Teresi, P. Nardinocchi, I. L. Dryden, C. Torromeo, and P. E. Puddu, The decomposition of deformation: New metrics to enhance shape analysis in medical imaging. Med. Image Anal. 46, 35 (2018).

    Article  Google Scholar 

  9. P. Piras, C. Torromeo, A. Evangelista, G. Esposito, P. Nardinocchi, L. Teresi, A. Madeo, F. Re, C. Chialastri, M. Schiariti, V. Varano, and P. E. Puddu, Non-invasive prediction of genotype positive-phenotype negative in hypertrophic cardiomyopathy by 3D modern shape analysis. Exp. Physiol. 104, 1688 (2019).

    Article  Google Scholar 

  10. P. Nardinocchi, and L. Teresi, On the active response of soft living tissues. J Elasticity 88, 27 (2007).

    Article  MathSciNet  Google Scholar 

  11. J. Merodio, and R. W. Ogden, Mechanical response of fiber-reinforced incompressible non-linearly elastic solids. Int. J. Non-Linear Mech. 40, 213 (2005).

    Article  Google Scholar 

  12. S. Hartmann, and P. Neff, Polyconvexity of generalized polynomial-type hyperelastic strain energy functions for near-incompressibility. Int. J. Solids Struct. 40, 2767 (2003).

    Article  MathSciNet  Google Scholar 

  13. L. Asner, M. Hadjicharalambous, R. Chabiniok, D. Peresutti, E. Sammut, J. Wong, G. Carr-White, P. Chowienczyk, J. Lee, A. King, N. Smith, R. Razavi, and D. Nordsletten, Estimation of passive and active properties in the human heart using 3D tagged MRI. Biomech. Model Mechanobiol. 15, 1121 (2016).

    Article  Google Scholar 

  14. M. Hadjicharalambous, R. Chabiniok, L. Asner, E. Sammut, J. Wong, G. Carr-White, J. Lee, R. Razavi, N. Smith, and D. Nordsletten, Analysis of passive cardiac constitutive laws for parameter estimation using 3D tagged MRI. Biomech. Model Mechanobiol. 14, 807 (2015).

    Article  Google Scholar 

  15. D. Mojsejenko, J. R. McGarvey, S. M. Dorsey, J. H. Gorman Iii, J. A. Burdick, J. J. Pilla, R. C. Gorman, and J. F. Wenk, Estimating passive mechanical properties in a myocardial infarction using MRI and finite element simulations. Biomech. Model Mechanobiol. 14, 633 (2015).

    Article  Google Scholar 

  16. J. Xi, P. Lamata, S. Niederer, S. Land, W. Shi, X. Zhuang, S. Ourselin, S. G. Duckett, A. K. Shetty, C. A. Rinaldi, D. Rueckert, R. Razavi, and N. P. Smith, The estimation of patient-specific cardiac diastolic functions from clinical measurements. Med. Image Anal. 17, 133 (2013).

    Article  Google Scholar 

  17. H. Gao, W. G. Li, L. Cai, C. Berry, and X. Y. Luo, Parameter estimation in a Holzapfel-Ogden law for healthy myocardium. J. Eng. Math. 95, 231 (2015).

    Article  MathSciNet  Google Scholar 

  18. S. Yang, L. T. Zhang, C. Hua, Y. Liu, J. Tang, X. Gong, and Z. Jiang, A prediction of in vivo mechanical stresses in blood vessels using thermal expansion method and its application to hypertension and vascular stenosis. Acta Mech. Sin. 34, 1156 (2018).

    Article  MathSciNet  Google Scholar 

  19. M. R. Pfaller, J. M. Hörmann, M. Weigl, A. Nagler, R. Chabiniok, C. Bertoglio, and W. A. Wall, The importance of the pericardium for cardiac biomechanics: From physiology to computational modeling. Biomech. Model Mechanobiol. 18, 503 (2019).

    Article  Google Scholar 

  20. A. Palit, S. K. Bhudia, T. N. Arvanitis, G. A. Turley, and M. A. Williams, Computational modelling of left-ventricular diastolic mechanics: Effect of fibre orientation and right-ventricle topology. J. Biomech. 48, 604 (2015).

    Article  Google Scholar 

  21. M. Strocchi, M. A. F. Gsell, C. M. Augustin, O. Razeghi, C. H. Roney, A. J. Prassl, E. J. Vigmond, J. M. Behar, J. S. Gould, C. A. Rinaldi, M. J. Bishop, G. Plank, and S. A. Niederer, Simulating ventricular systolic motion in a four-chamber heart model with spatially varying robin boundary conditions to model the effect of the pericardium. J. Biomech. 101, 109645 (2020).

    Article  Google Scholar 

  22. F. Dorri, P. F. Niederer, and P. P. Lunkenheimer, A finite element model of the human left ventricular systole. Comput. Methods Biomech. Biomed. Eng. 9, 319 (2006).

    Article  Google Scholar 

  23. E. Berberoğlu, H. O. Solmaz, and S. Göktepe, Computational modeling of coupled cardiac electromechanics incorporating cardiac dysfunctions. Eur. J. Mech.-A Solids 48, 60 (2014).

    Article  MathSciNet  Google Scholar 

  24. M. Genet, L. C. Lee, R. Nguyen, H. Haraldsson, G. Acevedo-Bolton, Z. Zhang, L. Ge, K. Ordovas, S. Kozerke, and J. M. Guccione, Distribution of normal human left ventricular myofiber stress at end diastole and end systole: A target for in silico design of heart failure treatments. J. Appl. Physiol. 117, 142 (2014).

    Article  Google Scholar 

  25. M. Peirlinck, K. L. Sack, P. De Backer, P. Morais, P. Segers, T. Franz, and M. De Beule, Kinematic boundary conditions substantially impact in silico ventricular function. Int. J. Numer. Meth Biomed. Engng. 35, e3151 (2019).

    Article  Google Scholar 

  26. J. F. Wenk, L. Ge, Z. Zhang, M. Soleimani, D. D. Potter, A. W. Wallace, E. Tseng, M. B. Ratcliffe, and J. M. Guccione, A coupled biventricular finite element and lumped-parameter circulatory system model of heart failure. Comput. Methods Biomech. Biomed. Eng. 16, 807 (2013).

    Article  Google Scholar 

  27. K. Sun, N. Stander, C. S. Jhun, Z. Zhang, T. Suzuki, G. Y. Wang, M. Saeed, A. W. Wallace, E. E. Tseng, A. J. Baker, D. Saloner, D. R. Einstein, M. B. Ratcliffe, and J. M. Guccione, A computationally efficient formal optimization of regional myocardial contractility in a sheep with left ventricular aneurysm. J. Biomech. Eng. 131, (2009).

  28. J. Aguado-Sierra, A. Krishnamurthy, C. Villongco, J. Chuang, E. Howard, M. J. Gonzales, J. Omens, D. E. Krummen, S. Narayan, R. C. P. Kerckhoffs, and A. D. McCulloch, Patient-specific modeling of dyssynchronous heart failure: A case study. Prog. Biophys. Mol. Biol. 107, 147 (2011).

    Article  Google Scholar 

  29. A. Evangelista, P. Nardinocchi, P. E. Puddu, L. Teresi, C. Torromeo, and V. Varano, Torsion of the human left ventricle: Experimental analysis and computational modeling. Prog. Biophys. Mol. Biol. 107, 112 (2011).

    Article  Google Scholar 

  30. H. Azhari, J. L. Weiss, W. J. Rogers, C. O. Siu, E. A. Zerhouni, and E. P. Shapiro, Noninvasive quantification of principal strains in normal canine hearts using tagged MRI images in 3-D. Am. J. Physiol.-Heart Circulatory Physiol. 264, H205 (1993).

    Article  Google Scholar 

  31. L. K. Waldman, D. Nosan, F. Villarreal, and J. W. Covell, Relation between transmural deformation and local myofiber direction in canine left ventricle. Circ. Res. 63, 550 (1988).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Nardinocchi.

Additional information

This work was supported by the Italian Minister for Education, Research, and University (Grant No. 2017KL4EF3), and “Sapienza” Università di Roma (Grant No. RM120172A77FB346). We aknowledge the Italian Group of Mathematical Physics (GNFM-INdAM), and the French-Italian International Research Program (IRP) Coss&Vita for support.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Colorado-Cervantes, J.I., Nardinocchi, P., Piras, P. et al. Patient-specific modeling of left ventricle mechanics. Acta Mech. Sin. 38, 621211 (2022). https://doi.org/10.1007/s10409-021-09041-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10409-021-09041-0

Keywords

Navigation