Skip to main content
Log in

Multi-parameter joint optimization for double-strip high-speed pantographs to improve pantograph-catenary interaction quality

双滑板高速受电弓的多参数联合优化以提高弓网耦合质量

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

The significant increase in speed of high-speed train will cause the dynamic contact force of the pantograph-catenary system to fluctuate more severely, which poses a challenge to the study of the pantograph-catenary relationship and the design of high-speed pantographs. Good pantograph-catenary coupling quality is the essential condition to ensure safe and efficient operation of high-speed train, stable and reliable current collection, and reduction in the wear of contact wires and pantograph contact strips. Among them, the dynamic parameters of high-speed pantographs are crucial to pantograph-catenary coupling quality. With the reduction of the standard deviation of the pantograph-catenary contact force as the optimization goal, multi-parameter joint optimization designs for the high-speed pantograph with two contact strips at multiple running speeds are proposed. Moreover, combining the sensitivity analysis at the optimal solutions, with the parameters and characteristics of in-service DSA380 high-speed pantograph, the optimization proposal of DSA380 was given.

摘要

高速列车的大幅提速, 将导致弓网动态接触力振荡更加剧烈, 给弓网关系研究和高速受电弓设计提出了挑战. 良好的弓网耦 合质量是确保高速列车安全高效运行、稳定可靠受流、降低接触线与受电弓滑板磨耗等的基本前提. 其中, 高速受电弓的动力学 参数对弓网耦合质量至关重要. 本文以降低弓网接触力标准差为优化目标, 提出了多个运行速度下的双滑板高速受电弓的多参数 联合优化设计方案. 此外, 结合最优解处的敏度分析, 以及DSA380型双滑板高速受电弓的现役参数和服役特点, 给出了DSA380的 优化建议.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. W. Yang, Y. J. Wei, G. L. Zhao, Y. Liu, X. H. Zeng, Y. L. Xing, J. Lai, Y. Y. Zhang, H. Wu, Q. Chen, Q. S. Liu, J. C. Li, K. X. Hu, Z. P. Yang, W. Z. Liu, W. J. Wang, S. G. Sun, W. H. Zhang, N. Zhou, R. P. Li, Q. S. Lv, X. S. Jin, Z. F. Wen, X. B. Xiao, X. Zhao, D. B. Cui, B. Wu, S. Q. Zhong, and X. Zhou, Research progress on the mechanics of high speed rails (in Chinese), Adv. Mech. 45, 217 (2015).

    Google Scholar 

  2. EN 50317:2012, Railway applications-current collection systems-requirements for and validation of measurements of the dynamic interaction between pantograph and overhead contact line (2012).

  3. EN 50367:2012, Railway applications-current collection systemstechnical criteria for the interaction between pantograph and overhead line (to achieve free access) (2012).

  4. EN 50318:2018, Railway applications-current collection systems-validation of simulation of the dynamic interaction between pantograph and overhead contact line (2018).

  5. Y. H. Cho, K. Lee, Y. Park, B. Kang, and K. Kim, Influence of contact wire pre-sag on the dynamics of pantograph-railway catenary, Int. J. Mech. Sci. 52, 1471 (2010).

    Article  Google Scholar 

  6. S. Gregori, M. Tur, E. Nadal, and F. J. Fuenmayor, An approach to geometric optimisation of railway catenaries, Vehicle Syst. Dyn. 56, 1162 (2018).

    Article  Google Scholar 

  7. J. Zhang, W. Liu, and Z. Zhang, Sensitivity analysis and research on optimisation methods of design parameters of high-speed railway catenary, IET Electr. Syst. Transp. 9, 150 (2019).

    Article  Google Scholar 

  8. J. Pombo, and J. Ambrosio, Influence of pantograph suspension characteristics on the contact quality with the catenary for high speed trains, Comput. Struct. 110–111, 32 (2012).

    Article  Google Scholar 

  9. N. Zhou, and W. Zhang, Investigation on dynamic performance and parameter optimization design of pantograph and catenary system, Finite Elem. Anal. Des. 47, 288 (2011).

    Article  Google Scholar 

  10. M. Z. Wu, Y. Liu, and X. H. Xu, Sensitivity analysis and optimization on parameters of high speed pantograph-catenary system (in Chinese), Chin. J. Theo. Appl. Mech. 53, 75 (2021).

    Google Scholar 

  11. J. H. Lee, Y. G. Kim, J. S. Paik, and T. W. Park, Performance evaluation and design optimization using differential evolutionary algorithm of the pantograph for the high-speed train, J. Mech. Sci. Technol. 26, 3253 (2012).

    Article  Google Scholar 

  12. J. Ambrósio, J. Pombo, and M. Pereira, Optimization of high-speed railway pantographs for improving pantograph-catenary contact, Theor. Appl. Mech. Lett. 3, 013006 (2013).

    Article  Google Scholar 

  13. X. Y. Wang, X. H. Nian, X. Y. Chu, and P. Yue, in Research on dynamic performance and parameter optimization of the high-speed pantograph and catenary system: Proceedings of the 8th IEEE Prognostics and System Health Management Conference, Harbin, 2017.

  14. A. Collina, and S. Bruni, Numerical simulation of pantograph-overhead equipment interaction, Vehicle Syst. Dyn. 38, 261 (2002).

    Article  Google Scholar 

  15. S. Bruni, J. Ambrosio, A. Carnicero, Y. H. Cho, L. Finner, M. Ikeda, S. Y. Kwon, J. P. Massat, S. Stichel, M. Tur, and W. Zhang, The results of the pantograph-catenary interaction benchmark, Vehicle Syst. Dyn. 53, 412 (2015).

    Article  Google Scholar 

  16. D. Zou, N. Zhou, L. Rui Ping, G. M. Mei, and W. H. Zhang, Experimental and simulation study of wave motion upon railway overhead wire systems, Proc. Inst. Mech. Eng. Part F-J. Rail Rapid Transit 231, 934 (2017).

    Article  Google Scholar 

  17. G. Poetsch, J. Evans, R. Meisinger, W. Kortüm, W. Baldauf, A. Veitl, and J. Wallaschek, Pantograph/catenary dynamics and control, Vehicle Syst. Dyn. 28, 159 (1997).

    Article  Google Scholar 

  18. G. Gilbert, and H. E. H. Davies, Pantograph motion on a nearly uniform railway overhead line, Proc. Inst. Electr. Eng. UK 113, 485 (1966).

    Article  Google Scholar 

  19. P. R. Scott, and M. Rothman, Computer evaluation of overhead equipment for electric railroad traction, IEEE Trans. Ind. Applicat. IA-10, 573 (1974).

    Article  Google Scholar 

  20. Y. Song, Z. Liu, F. Duan, Z. Xu, and X. Lu, Wave propagation analysis in high-speed railway catenary system subjected to a moving pantograph, Appl. Math. Model. 59, 20 (2018).

    Article  MathSciNet  Google Scholar 

  21. Y. Song, P. Antunes, J. Pombo, and Z. Liu, A methodology to study high-speed pantograph-catenary interaction with realistic contact wire irregularities, Mech. Mach. Theor. 152, 103940 (2020).

    Article  Google Scholar 

  22. F. Vesali, H. Molatefi, M. A. Rezvani, B. Moaveni, and M. Hecht, New control approaches to improve contact quality in the conventional spans and overlap section in a high-speed catenary system, Proc. Inst. Mech. Eng. Part F-J. Rail Rapid Transit 233, 988 (2019).

    Article  Google Scholar 

  23. Y. H. Cho, Numerical simulation of the dynamic responses of railway overhead contact lines to a moving pantograph, considering a nonlinear dropper, J. Sound Vib. 315, 433 (2008).

    Article  Google Scholar 

  24. S. D. Eppinger, D. N. O’Connor, W. P. Seering, and D. N. Wormley, Modeling and experimental evaluation of asymmetric pantograph dynamics, J. Dyn. Syst. Measure. Control 110, 168 (1988).

    Article  Google Scholar 

  25. R. M. G. A. Vieira, High speed train pantograph models identification, Dissertation for the Master’s Degree (Technical University of Lisbon, Lisbon, 2016).

    Google Scholar 

  26. R. D. Cook, Finite element modeling for stress analysis (John Wiley & Sons, Madison, 1995).

    MATH  Google Scholar 

  27. Y. Zhang, L. Wang, H. Zhao, and S. T. Lie, Extraction of mode shapes of beam-like structures from the dynamic response of a moving mass, Acta Mech. Sin. 35, 664 (2019).

    Article  MathSciNet  Google Scholar 

  28. EN 50318:2002, Railway applications-current collection systems-validation of simulation of the dynamic interaction between pantograph and overhead contact line (2002).

  29. P. Antunes, J. Ambrósio, J. Pombo, and A. Facchinetti, A new methodology to study the pantograph-catenary dynamics in curved railway tracks, Veh. Syst. Dyn. 58, 425 (2020).

    Article  Google Scholar 

  30. N. Zhou, R. P. Li, and W. H. Zhang, Modeling and simulation of catenary based on negative sag method (in Chinese), J. Traffic Transport. Eng. 9, 28 (2009).

    Google Scholar 

  31. J. H. Holland, Adaptation in Natural and Artificial Systems (MIT Press, Cambridge, 1992).

    Book  Google Scholar 

  32. D. E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learning (Pearson Education, Patparganj, 2006).

    Google Scholar 

  33. G. D. Cheng, Introduction to optimum design of engineering structures (in Chinese) (Dalian University of Technology Press, Dalian, 2012).

    Google Scholar 

  34. R. A. Caruana, and J. D. Schaffer, in Representation and hidden bias: gray vs. binary coding for genetic algorithms: Proceedings of the Fifth International Conference on Machine Learning, Ann Arbor, 12 June–14 June, 1988 (University of Michigan, Ann Arbor, 1988).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xianghong Xu  (许向红) or Jianshan Wang  (王建山).

Additional information

This work was supported by the National Natural Science Foundation of China (Grant No. 11672297), and the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB22020200).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, M., Xu, X., Yan, Y. et al. Multi-parameter joint optimization for double-strip high-speed pantographs to improve pantograph-catenary interaction quality. Acta Mech. Sin. 38, 521344 (2022). https://doi.org/10.1007/s10409-021-09018-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10409-021-09018-x

Keywords

Navigation