Skip to main content
Log in

Impact vibration behavior of railway vehicles: a state-of-the-art overview

  • Invited Review
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

Excessive vibrations of railway vehicles induced by dynamic impact loadings have a significant impact on train operating safety and stability; however, due to the complexity and diversity of railway lines and service environment, they are extremely difficult to eliminate. A comprehensive overview of recent studies on the impact vibration behavior of railway vehicles was given in this paper. First, the sources of impact excitations were categorized in terms of wheel-rail contact irregularity, aerodynamic loads, and longitudinal impulses by train traction/braking. Then the main research approaches of vehicle impact vibration were briefly introduced in theoretical, experimental, and simulation aspects. Also, the impact vibration response characteristics of railway vehicles were categorized and examined in detail to various impact excitation sources. Finally, some attempts of using the railway vehicle vibration to detect track defects and the possible mitigation measures were outlined.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

References

  1. Zhai, W.M., Han, Z.L., Chen, Z.W., et al.: Train-track-bridge dynamic interaction: a state-of-the-art review. Veh. Syst. Dyn. 57, 984–1027 (2019)

    Article  Google Scholar 

  2. Zhai, W.M.: Vehicle-Track Coupled Dynamics. Springer, Singapore (2020)

    Book  Google Scholar 

  3. Thompson, D.J., Iglesias, E.L., Liu, X.W., et al.: Recent developments in the prediction and control of aerodynamic noise from high-speed trains. Int. J. Rail Transp. 3, 119–150 (2015)

    Article  Google Scholar 

  4. Li, S.Y., Zhen, Z.J., Yu, J.L., et al.: Dynamic simulation and safety evaluation of high-speed trains meeting in open air. Acta. Mech. Sin. 32, 206–214 (2016)

    Article  Google Scholar 

  5. Ling, L., Xiao, X.B., Jin, X.S.: Development of a simulation model for dynamic derailment analysis of high-speed trains. Acta. Mech. Sin. 30, 860–875 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  6. Liu, D.R., Zhou, W., Zhang, L., et al.: Momentary discomfort of high-speed trains passing through complex terrain sections under strong wind conditions. Veh. Syst. Dyn. 58, 1428–1450 (2020)

    Article  Google Scholar 

  7. Zhai, W.M., Wang, K.Y., Cai, C.B.: Fundamentals of vehicle–track coupled dynamics. Veh. Syst. Dyn. 47, 1349–1376 (2009)

    Article  Google Scholar 

  8. Ishak, I.A., Ali, M.S.M., Yakub, M.F.M., et al.: Effect of crosswinds on aerodynamic characteristics around a generic train model. Int. J. Rail Transp. 7, 23–54 (2019)

    Article  Google Scholar 

  9. Zhai, W.M., Jin, X.S., Wen, Z.F., Zhao, X.: Wear problems of high-speed wheel/rail systems: observations, causes, and countermeasures in China. Appl. Mech. Rev. 72, 060801 (2020)

    Article  Google Scholar 

  10. Tao, G.Q., Wen, Z.F., Jin, X.S., Yang, X.X.: Polygonisation of railway wheels: a critical review. Railw. Eng. Sci. 28, 317–345 (2020)

    Article  Google Scholar 

  11. Nielsen, J.C.O., Johansson, A.: Out-of-round railway wheels-a literature survey. Proc. Inst. Mech. Eng. F 214, 79–91 (2000)

    Article  Google Scholar 

  12. Jing, L., Han, L.L.: Further study on the wheel-rail impact response induced by a single wheel flat: the coupling effect of strain rate and thermal stress. Veh. Syst. Dyn. 55, 1946–1972 (2017)

    Article  Google Scholar 

  13. Han, L.L., Jing, L., Zhao, L.M.: Finite element analysis of the wheel-rail impact behavior induced by a wheel flat for high-speed trains: the influence of strain rate. Proc. Inst. Mech. Eng. F 232, 990–1004 (2017)

    Article  Google Scholar 

  14. Liu, K., Jing, L.: A finite element analysis-based study on the dynamic wheel-rail contact behaviour caused by wheel polygonization. Proc. Inst. Mech. Eng. F 234, 1285–1298 (2020)

    Article  Google Scholar 

  15. Jing, L., Liu, Z., Liu, K.: A mathematically-based study of the random wheel-rail contact irregularity by wheel out-of-roundness. Veh. Syst. Dyn. 2020, 1–36 (2020)

    Google Scholar 

  16. Nielsen, J.C.O., Lombaert, G., Fracois, S.: A hybrid model for prediction of ground-borne vibration due to discrete wheel/rail irregularities. J. Sound Vib. 345, 103–120 (2015)

    Article  Google Scholar 

  17. Germonpré, M., Nielsen, J.C.O., Degrande, G., et al.: Contributions of longitudinal track unevenness and track stiffness variation to railway induced vibration. J. Sound Vib. 437, 292–307 (2018)

    Article  Google Scholar 

  18. Wu, X.W., Rakheja, S., Qu, S., et al.: Dynamic responses of a high-speed railway car due to wheel polygonalisation. Veh. Syst. Dyn. 56, 1817–1837 (2018)

    Article  Google Scholar 

  19. Guo, F., Wu, S.C., Liu, J.Y., et al.: Fatigue life assessment of bogie frames in high-speed railway vehicles considering gear meshing. Int. J. Fatigue 132, 105353 (2020)

    Article  Google Scholar 

  20. Johansson, A., Nielsen, J.C.O.: Out-of-round railway wheels-wheel rail contact forces and track response derived from field tests and numerical simulations. Proc. Inst. Mech. Eng. F 217, 135–146 (2003)

    Article  Google Scholar 

  21. Lei, X., Noda, N.A.: Analyses of dynamic response of vehicle and track coupling system with random irregularity of track vertical profile. J. Sound Vib. 258, 147–165 (2002)

    Article  Google Scholar 

  22. Sun, Z., Zhang, Y., Guo, D., et al.: Research on running stability of CRH3 high speed trains passing by each other. Eng. Appl. Comput. Fluid Mech. 8, 140–157 (2014)

    Google Scholar 

  23. Wu, Q.W., Spiryagin, M., Cole, C.: Longitudinal train dynamics: an overview. Veh. Syst. Dyn. 54, 1688–1714 (2016)

    Article  Google Scholar 

  24. Wilson, G., Saurenman, H., Nelson, J.: Control of ground-borne noise and vibration. J. Sound Vib. 87, 339–350 (1983)

    Article  Google Scholar 

  25. Nelson, J.: Recent developments in ground-borne noise and vibration control. J. Sound Vib. 193, 367–376 (1996)

    Article  Google Scholar 

  26. Gullers, P., Andersson, L., Lunden, R.: High-frequency vertical wheel-rail contact forces-Field measurements and influence of track irregularities. Wear 265, 1472–1478 (2008)

    Article  Google Scholar 

  27. Zhang, H., Ren, Z., Wu, Q., et al.: Simulation on metro railway induced vibration. Part II: effect of corrugated rail. Vibroeng. Procedia 29, 136–140 (2019)

    Article  Google Scholar 

  28. Kassa, E., Nielsen, J.C.O.: Dynamic interaction between train and railway turnout: full-scale field test and validation of simulation models. Veh. Syst. Dyn. 46, 521–534 (2008)

    Article  Google Scholar 

  29. Yang, Y., Ling, L., Wang, C., et al.: Wheel/rail dynamic interaction induced by polygonal wear of locomotive wheels. Veh. Syst. Dyn. 2020, 1–25 (2020)

    Google Scholar 

  30. Steenbergen, M.J.M.M.: The role of the contact geometry in wheel-rail impact due to wheel flats. Veh. Syst. Dyn. 45, 1097–1116 (2007)

    Article  Google Scholar 

  31. Baeza, L., Roda, A., Carballeira, J., Giner, E.: Railway train-track dynamics for wheel flats with improved contact models. Nonlinear Dyn. 45, 385–397 (2006)

    Article  MATH  Google Scholar 

  32. Pieringer, A., Kropp, W., Nielsen, J.: The influence of contact modelling on simulated wheel/rail interaction due to wheel flats. Wear 314, 273–281 (2014)

    Article  Google Scholar 

  33. Ren, Z.S.: An investigation on wheel/rail impact dynamics with a three-dimensional flat model. Veh. Syst. Dyn. 57, 39–388 (2019)

    Google Scholar 

  34. Newton, S.G., Clark, R.A.: An investigation into the dynamic effects on the track of wheel flats on railway vehicles. J. Mech. Eng. Sci. 21, 287–297 (1979)

    Article  Google Scholar 

  35. Fermér, M., Nielsen, J.C.O.: Wheel/rail contact forces for flexible versus solid wheels due to tread irregularities. Veh. Syst. Dyn. 23, 142–157 (1994)

    Article  Google Scholar 

  36. Jenkins, H.H., Stephenson, J.E., Clayton, G.A., et al.: The effect of track and vehicle parameters on wheel/rail vertical dynamic loads. Railw. Eng. J. 3, 2–16 (1974)

    Google Scholar 

  37. Wu, T.X., Thompson, D.J.: A hybrid model for the noise generation due to railway wheel flats. J. Sound Vib. 251, 115–139 (2002)

    Article  Google Scholar 

  38. Mazilu, T.: A dynamic model for the impact between the wheel flat and rail. UPB Sci. Bull. Ser. D 69, 45–58 (2007)

    Google Scholar 

  39. Nielsen, J.C.O., Igeland, A.: Vertical dynamic interaction between train and track influence of wheel and track imperfections. J. Sound Vib. 187, 825–839 (1995)

    Article  Google Scholar 

  40. Dukkipati, R.V., Dong, R.: Impact loads due to wheel flats and shells. Veh. Syst. Dyn. 31, 1–22 (1999)

    Article  Google Scholar 

  41. Uzzal, R.U.A., Ahmed, A.K.W., Rakheja, S.: Analysis of pitch plane railway vehicle-track interactions due to single and multiple wheel flats. J. Rail Rapid Transit 223, 375–390 (2009)

    Article  Google Scholar 

  42. Uzzal, R.U.A., Ahmed, A.K.W., Bhat, R.B.: Modelling, validation and analysis of a three-dimensional railway vehicle-rack system model with linear and nonlinear track properties in the presence of wheel flats. Veh. Syst. Dyn. 51, 1659–1721 (2013)

    Article  Google Scholar 

  43. Pieringer, A., Kropp, W.: A fast time-domain model for wheel/rail interaction demonstrated for the case of impact forces caused by wheel flats. J. Acoust. Soc. Am. 123, 3266–3266 (2008)

    Article  Google Scholar 

  44. Zhu, J.J., Ahmed, W., Rakheja, S., et al.: Impact load due to railway wheels with multiple flats predicted using an adaptive contact model. J. Rail Rapid Transit 223, 391–403 (2009)

    Article  Google Scholar 

  45. Zhai, W.M., Wang, Q.C., Lu, Z.W., et al.: Dynamic effects of vehicles on tracks in the case of raising train speeds. J. Rail Rapid Transit 215, 125–135 (2001)

    Article  Google Scholar 

  46. Bian, J., Gu, Y.T., Murray, M.H.: Numerical study of impact forces on railway sleepers under wheel flat. Adv. Struct. Eng. 16, 127–134 (2013)

    Article  Google Scholar 

  47. Wu, X.W., Rakheja, S., Ahmed, A.K.W., et al.: Influence of a flexible wheelset on the dynamic responses of a high-speed railway car due to a wheel flat. J. Rail Rapid Transit 232, 1033–1048 (2018)

    Article  Google Scholar 

  48. Liu, W., Ma, W.H., Luo, S.H., et al.: Research into the problem of wheel tread spalling caused by wheelset longitudinal vibration. Veh. Syst. Dyn. 53, 546–567 (2015)

    Article  Google Scholar 

  49. Kpachob, O.T.: Bearing capacity of bogie bearing castings with defects on wheel tread. Foreign Locomotive & Rolling Stock Technology, pp. 30–35 (2017) (in Chinese)

  50. Wang, J.Y.: Research on wheel internal damage and tread spelling. Master Thesis. Dalian Jiaotong University, Dalian (2018) (in Chinese)

  51. Jin, X.S., Wu, L., Fang, J.Y., et al.: An investigation into the mechanism of the polygonal wear of metro train wheels and its effect on the dynamic behaviour of a wheel/rail system. Veh. Syst. Dyn. 50, 1817–1834 (2012)

    Article  Google Scholar 

  52. Liu, X.Y., Zhai, W.M.: Analysis of vertical dynamic wheel/rail interaction caused by polygonal wheels on high-speed trains. Wear 314, 282–290 (2014)

    Article  Google Scholar 

  53. Xin, T., Wang, P., Ding, Y.: Effect of long-wavelength track irregularities on vehicle dynamic responses. Shock Vib. 2019, 4178065 (2019)

    Google Scholar 

  54. Zhai, W., Cai, Z.: Dynamic interaction between a lumped mass vehicle and a discretely supported continuous rail track. Comput. Struct. 63, 987–997 (1997)

    Article  Google Scholar 

  55. Nielsen, J.: High-frequency vertical wheel-rail contact forces-Validation of a prediction model by field testing. Wear 265, 1465–1471 (2008)

    Article  Google Scholar 

  56. Wang, K.Y., Liu, P.F., Zhai, W.M.: Wheel/rail dynamic interaction due to excitation of rail corrugation in high-speed railway. Sci. China Technol. Sci. 58, 226–235 (2015)

    Article  Google Scholar 

  57. Knothe, K., Groß-Thebing, A.: Short wavelength rail corrugation and non-steady state contact mechanics. Veh. Syst. Dyn. 46, 49–66 (2008)

    Article  Google Scholar 

  58. Jin, X., Wang, K., Wen, Z., et al.: Effect of rail corrugation on vertical dynamics of railway vehicle coupled with a track. Acta. Mech. Sin. 21, 95–102 (2005)

    Article  MATH  Google Scholar 

  59. Kaewunruen, S., Ishida, M., Marich, S.: Dynamic wheel-rail interaction over rail squat defects. Acoust. Aust. 43, 97–107 (2015)

    Article  Google Scholar 

  60. Wang, K., Zhai, W., Lv, K., et al.: Numerical investigation on wheel-rail dynamic vibration excited by rail spalling in high-speed railway. Shock Vib. 2016, 9108780 (2016)

    Google Scholar 

  61. Xu, L., Gao, J.M., Zhai, W.M.: On effects of rail fastener failure on vehicle/track interactions. Struct. Eng. Mech. 63, 659–667 (2017)

    Google Scholar 

  62. Morales, I.S., Irene, R.J., Hernandez, C., et al.: Derailment risk and dynamics of railway vehicles in curved tracks: Analysis of the effect of failed fasteners. J. Mod. Transp. 24, 38–47 (2016)

    Article  Google Scholar 

  63. Xiao, X.B., Jin, X.S., Wen, Z.F.: Effect of disabled fastening systems and ballast on vehicle derailment. J. Vib. Acoust. 129, 217–229 (2007)

    Article  Google Scholar 

  64. Guo, W.W., Xia, H., Karoumi, R.: Aerodynamic effect of wind barriers and running safety of trains on high-speed railway bridges under cross winds. Wind Struct. 20, 213–236 (2015)

    Article  Google Scholar 

  65. Li, Y.L., Xiang, H.Y., Wang, B., et al.: Dynamic analysis of wind-vehicle-bridge coupling system during the meeting of two trains. Adv. Struct. Eng. 16, 1663–1670 (2013)

    Article  Google Scholar 

  66. Yang, W., Deng, E., Zhu, Z., et al.: Deterioration of dynamic response during high-speed train travelling in tunnel-bridge-tunnel scenario under crosswinds. Tunnell. Undergr. Space Technol. 106, 103627 (2020)

    Article  Google Scholar 

  67. You, W., Kwon, H., Park, J., et al.: Effect of wind gusts on the dynamics of railway vehicles running on a curved track. Proc. Inst. Mech. Eng. F 232, 1103–1120 (2018)

    Article  Google Scholar 

  68. Sun, Z., Dai, H.Y., Gan, F., et al.: Dynamic response of a high-speed train under a type of gust with different durations. Proc. Inst. Mech. Eng. F 235, 559–572 (2021)

    Article  Google Scholar 

  69. Wei, L., Zeng, J., Wu, P.B., et al.: Safety analysis of high speed trains under cross winds using indirect wheel-rail force measuring method. J. Wind Eng. Ind. Aerodyn. 183, 55–67 (2018)

    Article  Google Scholar 

  70. Liu, K., Jing, L., Ren, M.: The characteristics of air wave induced by two high-speed trains passing by each other in a tunnel. Adv. Mech. Eng. 10, 1–16 (2018)

    Google Scholar 

  71. Liu, T.H., Chen, Z.W., Liu, X.D., et al.: Transient loads and their influence on the dynamic responses of trains in a tunnel. Tunnell. Undergr. Space Technol. 66, 121–133 (2017)

    Article  Google Scholar 

  72. Wei, L., Zeng, J., Wang, Q.S.: Investigation of in-train stability and safety assessment for railway vehicles during braking. J. Mech. Sci. Technol. 30, 1507–1525 (2016)

    Article  Google Scholar 

  73. Wei, W., Zhang, J., Zhao, X., et al.: Heavy haul train impulse and reduction in train force method. Aust. J. Mech. Eng. 16, 118–125 (2018)

    Article  Google Scholar 

  74. Wei, W., Hu, Y., Wu, Q., et al.: An air brake model for longitudinal train dynamics studies. Veh. Syst. Dyn. 55, 517–533 (2017)

    Article  Google Scholar 

  75. Nasr, A., Mohammadi, S.: The effects of train brake delay time on in-train forces. Proc. Inst. Mech. Eng. F 224, 523–534 (2010)

    Article  Google Scholar 

  76. Arvidsson, T., Karoumi, R.: Train-bridge interaction-a review and discussion of key model parameters. Int. J. Rail Transp. 2, 147–186 (2014)

    Article  Google Scholar 

  77. Krylov, A.N.: Mathematical collection of papers of the Academy of Sciences. Russia, St. Petersburg (1905)

  78. Timoshenko, S.P.: On the forced vibrations of bridges. Lond. Edinb. Dublin Philos. Mag. J. Sci. 43, 1018–1019 (1922)

    Article  Google Scholar 

  79. Willis, R.: Preliminary essay to the Appendix B: Experiments for determining the effects produced by causing weights to travel over bars with different velocities. Report of the commissions appointed to inquire into the application of iron to railway structures. W. Clowes and Sons, London (1849)

  80. Blejwas, T.E., Feng, C.C., Ayre, R.S.: Dynamic interaction of moving vehicles and structures. J. Sound Vib. 67, 513–521 (1979)

    Article  Google Scholar 

  81. Biggs, J.M., Testa, B.: Introduction to Structural Dynamics. McGraw-Hill, New York (1964)

    Google Scholar 

  82. Wen, R.K.: Dynamic response of beams traversed by two-axle loads. J .Eng. Mech. Div. 86, 91–112 (1960)

    Article  Google Scholar 

  83. Zhai, W.M., Cai, C.B.: Train/track/bridge dynamic interactions: simulation and applications. Veh. Syst. Dyn. 37, 653–665 (2002)

    Article  Google Scholar 

  84. Wang, K.P., Xia, H., Xu, M., et al.: Dynamic analysis of train-bridge interaction system with flexible car-body. J. Mech. Sci. Technol. 29, 3571–3580 (2015)

    Article  Google Scholar 

  85. Younesian, D., Marjani, S.R., Esmailzadeh, E.: Importance of flexural mode shapes in dynamic analysis of high-speed trains traveling on bridges. J. Vib. Control 20, 1565–1583 (2014)

    Article  Google Scholar 

  86. Chu, K.H., Dhar, C.L., Garg, V.K.: Railway-bridge impact: simplified train and bridge model. J. Struct. Div. 105, 1823–1844 (1979)

    Article  Google Scholar 

  87. Chu, K.H., Garg, V.K., Bhatti, M.H.: Impact in truss bridge due to freight trains. J. Struct. Div. 111, 159–174 (1985)

    Google Scholar 

  88. Zhai, W.M., Sun, X.: A detailed model for investigating vertical interaction between railway vehicle and track. Veh. Syst. Dyn. 23, 603–615 (1994)

    Article  Google Scholar 

  89. Winkler, E.: Die Lehre von der Elastizita t und Festigkeit. Dominicus, Prague (1867)

  90. Kenney, J.T.: Steady-state vibrations of beam on elastic foundation for moving load. J. Appl. Mech. 21, 359–364 (1954)

    Article  MATH  Google Scholar 

  91. Lou, P., Au, F.T.K.: Finite element formulae for internal forces of Bernoulli-Euler beams under moving vehicles. J. Sound Vib. 332, 1533–1552 (2013)

    Article  Google Scholar 

  92. Wu, T.X., Thompson, D.J.: A double Timoshenko beam model for vertical vibration analysis of railway track at high frequencies. J. Sound Vib. 224, 329–348 (1999)

    Article  Google Scholar 

  93. Koro, K., Abe, K., Ishida, M., et al.: Timoshenko beam finite element for vehicle-track vibration analysis and its application to jointed railway track. Proc. Inst. Mech. Eng. F 218, 159–172 (2004)

    Article  Google Scholar 

  94. Hertz, H.: Ueber die Berührung fester elastischer Körper. Journal Für Die Reine Und Angewandte Mathematik 92, 156–171 (1882)

    MathSciNet  MATH  Google Scholar 

  95. Kalker, J.J.: Survey of wheel-rail rolling contact theory. Veh. Syst. Dyn. 8, 317–358 (1979)

    Article  Google Scholar 

  96. Meymand, S.Z., Keylin, A., Ahmadian, M.: A survey of wheel–rail contact models for rail vehicles. Veh. Syst. Dyn. 54, 386–428 (2016)

    Article  Google Scholar 

  97. Kalker, J.J.: Wheel-rail rolling contact theory. Wear 144, 243–261 (1991)

    Article  Google Scholar 

  98. Pascal, J.P.: About multi-hertzian-contact hypothesis and equivalent conicity in the case of S1002 and UIC60 analytical wheel/rail profiles. Veh. Syst. Dyn. 22, 57–78 (1993)

    Article  Google Scholar 

  99. Piotrowski, J., Chollet, H.: Wheel-rail contact models for vehicle system dynamics including multi-point contact. Veh. Syst. Dyn. 43, 455–483 (2005)

    Article  Google Scholar 

  100. Piotrowski, J., Kik, W.: A simplified model of wheel/rail contact mechanics for non-Hertzian problems and its application in rail vehicle dynamic simulations. Veh. Syst. Dyn. 46, 27–48 (2008)

    Article  Google Scholar 

  101. Ayasse, J.B., Chollet, H.: Determination of the wheel rail contact patch in semi-Hertzian conditions. Veh. Syst. Dyn. 43, 161–172 (2005)

    Article  Google Scholar 

  102. Carter, F.W.: On the action of locomotive driving wheel. Proc. R. Soc. Lond. 112, 151–157 (1926)

    MATH  Google Scholar 

  103. Vermeulen, P.L., Johnson, K.L.: Contact of non-spherical bodies transmitting tangential forces. J. Appl. Mech. 31, 338–340 (1964)

    Article  MATH  Google Scholar 

  104. Kalker, J.J.: On the rolling contact of two elastic bodies in the presence of dry friction. Phd. Thesis. Delft University of Technology, The Netherlands (1967)

  105. Kalker, J.J.: A fast algorithm for the simplified theory of rolling contact. Veh. Syst. Dyn. 11, 1–13 (1982)

    Article  Google Scholar 

  106. Polach, O.: Fast wheel-rail forces calculation computer code. Veh. Syst. Dyn. 33, 728–739 (2000)

    Article  Google Scholar 

  107. Shen, Z.Y., Herdrick, J.K., Elkins, J.A.: A comparison of alternative creep-force models for rail vehicle dynamic analysis. Veh. Syst. Dyn. 12, 79–83 (1983)

    Article  Google Scholar 

  108. Zhai, W.M., Liu, P.F., Lin, J.H., et al.: Experimental investigation on vibration behaviour of a CRH train at speed of 350 km/h. Int. J. Transp. 3, 1–16 (2015)

    Google Scholar 

  109. Kassa, E., Andersson, C., Nielsen, J.C.O.: Simulation of dynamic interaction between train and railway turnout. Veh. Syst. Dyn. 44, 247–258 (2006)

    Article  Google Scholar 

  110. Wang, L.C., Ping, W., Zhao, C.Y., et al.: An experimental study on the characteristics of vibration source in urban rail transit turnouts. Proc. Inst. Mech. Eng. F 234, 945–957 (2020)

    Article  Google Scholar 

  111. Liu, D.R., Tomasini, G.M., Rocchi, D., et al.: Correlation of car-body vibration and train overturning under strong wind conditions. Mech. Syst. Signal Process. 142, 106743 (2020)

    Article  Google Scholar 

  112. Gallagher, M., Morden, J., Baker, C., et al.: Trains in crosswinds-Comparison of full-scale on-train measurements, physical model tests and CFD calculations. J. Wind Eng. Ind. Aerodyn. 175, 428–444 (2018)

    Article  Google Scholar 

  113. Dorigatti, F., Sterling, M., Baker, C.J., et al.: Cross wind effects on the stability of a model passenger train-A comparison of static and moving experiments. J. Wind Eng. Ind. Aerodyn. 138, 36–51 (2015)

    Article  Google Scholar 

  114. Hansson, J., Takano, M., Takigami, T., et al.: Vibration suppression of railway car body with piezoelectric elements. JSME Int J. Ser. C 47, 451–456 (2004)

    Article  Google Scholar 

  115. Nagai, M., Yoshida, H., Tohtake, T., et al.: Coupled vibration of passenger and lightweight car-body in consideration of human-body biomechanics. Veh. Syst. Dyn. 44, 601–611 (2006)

    Article  Google Scholar 

  116. Zeng, Z.P., Wang, J.D., Yin, H.T., et al.: Experimental investigation on the vibration reduction characteristics of an optimized heavyhaul railway low-vibration track. Shock Vib. 2019, 1539564 (2019)

    Google Scholar 

  117. Steišūnasa, S., Dižob, J., Bureika, G., et al.: Examination of vertical dynamics of passenger car with wheel flat considering suspension parameters. Procedia Eng. 187, 235–241 (2017)

    Article  Google Scholar 

  118. Xu, L., Zhai, W., Gao, J., et al.: On effects of track random irregularities on random vibrations of vehicle-track interactions. Probab. Eng. Mech. 50, 25–35 (2017)

    Article  Google Scholar 

  119. Sadeghi, J., Rabiee, S., Khajehdezfuly, A., et al.: Effect of rail irregularities on ride comfort of train moving over ballast-less tracks. Int. J. Struct. Stab. 19, 1950060 (2019)

    Article  MathSciNet  Google Scholar 

  120. Zhao, X., Li, Z.L.: The solution of frictional wheel–rail rolling contact with a 3D transient finite element model: validation and error analysis. Wear 271, 444–452 (2011)

    Article  Google Scholar 

  121. Yang, Z., Boogaard, A., Chen, R., et al.: Numerical and experimental study of wheel-rail impact vibration and noise generated at an insulated rail joint. Int. J. Impact Eng. 113, 29–39 (2018)

    Article  Google Scholar 

  122. Xin, L., Markine, V.L., Shevtsov, I.Y.: Numerical analysis of the dynamic interaction between wheel set and turnout crossing using the explicit finite element method. Veh. Syst. Dyn. 54, 301–327 (2016)

    Article  Google Scholar 

  123. Lulu, G.B., Chen, R., Wang, P.: Random vibration analysis of tram-track interaction on a curve due to the polygonal wheel and track irregularity. Veh. Syst. Dyn. 2020, 1–23 (2020)

    Google Scholar 

  124. Liu, D., Lu, Z., Zhong, M., et al.: Measurements of car-body lateral vibration induced by high-speed trains negotiating complex terrain sections under strong wind conditions. Veh. Syst. Dyn. 56, 173–189 (2018)

    Article  Google Scholar 

  125. Zeng, X.H., Wu, H., Lai, J., et al.: Hunting stability of high-speed railway vehicles on a curved track considering the effects of steady aerodynamic loads. J. Vib. Control 22, 4158–4175 (2016)

    Article  Google Scholar 

  126. Wu, H., Zeng, X.H., Lai, J., et al.: Nonlinear hunting stability of high-speed railway vehicle on a curved track under steady aerodynamic load. Veh. Syst. Dyn. 58, 175–197 (2020)

    Article  Google Scholar 

  127. Li, T., Zhang, J.Y., Zhang, W.H., et al.: Dynamic performance of high-speed train passing windbreak in crosswind. J. China Railw. Soc. 34, 30–35 (2012) (in Chinese)

    Google Scholar 

  128. Li, Y.L., Xiang, H.Y., Qiang, S.Z.: Review on coupling vibration of wind-vehicle-bridge systems. China J. Highw. Transp. 31, 24–37 (2018). (in Chinese)

    Google Scholar 

  129. Charuvisit, S., Kimurab, K., Fujino, Y.: Effects of wind barrier on a vehicle passing in the wake of a bridge tower in cross wind and its response. J. Wind Eng. Ind. Aerodyn. 92, 609–639 (2004)

    Article  Google Scholar 

  130. Xiang, H.Y., Li, Y.L., Chen, B.: Protection effect of railway wind barrier on running safety of train under cross winds. Adv. Struct. Eng. 17, 1177–1187 (2014)

    Article  Google Scholar 

  131. Miao, X., Chen, C., Li, M., et al.: Influence of intersection on lateral vibration of high-speed trains on open tracks. J. China Railw. Soc. 36, 14–19 (2014). (in Chinese)

    Google Scholar 

  132. Guo, X.R., Tang, J.F.: Effects of wind barrier porosity on the coupled vibration of a train-bridge system in a crosswind. Struct. Eng. Int. 29, 268–275 (2019)

    Article  Google Scholar 

  133. Qian, C.Q., Zhen, Z.J., Yu, J.L., et al.: Dynamic response of side windows of high-speed trains subjected to crossing air pressure pulse. J.Mech. Eng. 49, 30–36 (2013). (in Chinese)

    Article  Google Scholar 

  134. Jing, L., Liu, K., Ren, M., et al.: The transient response of car body and side windows for high-speed trains passing by each other in a tunnel. Compos. B Eng. 166, 284–297 (2019)

    Article  Google Scholar 

  135. Choi, I.Y., Um, J.H., Lee, J.S.: The influence of track irregularities on the running behavior of high-speed trains. Proc. Inst. Mech. Eng. F 227, 94–102 (2013)

    Article  Google Scholar 

  136. Hung, C.F., Hsu, W.L.: Influence of long-wavelength track irregularities on the motion of a high-speed train. Veh. Syst. Dyn. 56, 1–18 (2017)

    Google Scholar 

  137. Dumitriu, M.: Analysis of the dynamic response in the railway vehicles to the track vertical irregularities. Part II: the numerical analysis. J. Eng. Sci. Technol. Rev. 8, 32–39 (2015)

    Article  Google Scholar 

  138. Stasys, S., Ján, D., Gintautas, B., et al.: Examination of vertical dynamics of passenger car with wheel flat considering suspension parameters. Procedia Eng. 187, 235–241 (2017)

    Article  Google Scholar 

  139. Shi, H.L., Wang, J.B., Wu, P.B., et al.: Field measurements of the evolution of wheel wear and vehicle dynamics for high-speed trains. Veh. Syst. Dyn. 56, 1187–1206 (2018)

    Article  Google Scholar 

  140. Iwnicki, S.: Handbook of Railway Vehicle Dynamics. CRC Press, Boca Raton (2006)

    Book  Google Scholar 

  141. Chen, Z.G., Zhai, W.M., Wang, K.Y.: Locomotive dynamic performance under traction/braking conditions considering effect of gear transmissions. Veh. Syst. Dyn. 56, 1097–1117 (2018)

    Article  Google Scholar 

  142. Guo, L.R., Wang, K.Y., Chen, Z.G., et al.: Effect of lateral stiffness of secondary suspensions on heavy-haul locomotives stability during braking based on simulation and experiment. Transport 34, 548–558 (2019)

    Article  Google Scholar 

  143. Ling, L., Li, W., Foo, E., et al.: Investigation into the vibration of metro bogies induced by rail corrugation. Chin. J. Mech. Eng. 30, 93–102 (2017)

    Article  Google Scholar 

  144. Shi, H.M., Zhou, J.L.: Vibration analysis of high-Speed vehicles under the condition of track random irregularity. Adv. Mater. Res. 211–212, 525–529 (2011)

    Article  Google Scholar 

  145. Gao, J.M., Zhai, W.M., Guo, Y.: Wheel-rail dynamic interaction due to rail weld irregularity in high-speed railways. Proc. Inst. Mech. Eng. F 232, 249–261 (2016)

    Article  Google Scholar 

  146. Wang, Z.W., Allen, P., Mei, G.M., et al.: Dynamic characteristics of a high-speed train gearbox in the vehicle-track coupled system excited by wheel defects. Proc. Inst. Mech. Eng. F 234, 1210–1226 (2020)

    Article  Google Scholar 

  147. Wang, Z.W., Mei, G.M., Zhang, W.H., et al.: Effects of polygonal wear of wheels on the dynamic performance of the gearbox housing of a high-speed train. J Rail Rapid Transit 232, 1852–1863 (2018)

    Article  Google Scholar 

  148. Yang, R.Z., Zeng, J.: Influences of higher order wheel polygon on vibration of wheel-rail system. J. Vib. Shock 39, 101–110 (2020). (in Chinese)

    Google Scholar 

  149. Czop, P., Mendrok, K., Uhl, T.: Application of inverse linear parametric models in the identification of rail track irregularities. Arch. Appl. Mech. 81, 1541–1554 (2011)

    Article  MATH  Google Scholar 

  150. Molodova, M., Li, Z.L., Dollevoet, R.: Axle box acceleration: measurement and simulation for detection of short track defects. Wear 271, 349–356 (2011)

    Article  Google Scholar 

  151. Salvador, P., Naranjo, V., Insa, R., et al.: Axle box accelerations: their acquisition and time-frequency characterisation for railway track monitoring purposes. Measurement 82, 301–312 (2016)

    Article  Google Scholar 

  152. Hayashi, Y., Tsunashima, H., Marumo, Y.: Fault detection of railway vehicle suspension systems using multiple-model approach. J. Mech. Syst. Transp. Logist. 1, 88–99 (2008)

    Article  Google Scholar 

  153. Hirotaka, M., Hitoshi, T., Takashi, K., et al.: Condition monitoring of railway track using in-service vehicle. J. Mech. Syst. Transp. Logist. 3, 154–165 (2010)

    Article  Google Scholar 

  154. Xiao, X., Sun, Z., Shen, W.: A Kalman filter algorithm for identifying track irregularities of railway bridges using vehicle dynamic responses. Mech. Syst. Signal Process. 138, 106582 (2020)

    Article  Google Scholar 

  155. Lombaert, G., Degrande, G., François, S., et al.: Noise and Vibration Mitigation for Rail Transportation Systems. Springer, Berlin (2015)

    Google Scholar 

  156. Zhang, Z.B., Liang, H.X., Hou, M.R., et al.: Influence of reprofiling process on the generation and development of wheel polygon wear of EMUs. China Railw. 2021, 32–38 (2021). (in Chinese)

    Google Scholar 

  157. Grassie, S.: Rail irregularities, corrugation and acoustic roughness: characteristics, significance and effects of reprofiling. Proc. Inst. Mech. Eng. F 226, 542–557 (2012)

    Article  Google Scholar 

  158. Wan, C., Markine, V.L., Shevtsov, I.Y.: Improvement of vehicle-turnout interaction by optimising the shape of crossing nose. Veh. Syst. Dyn. 52, 1517–1540 (2014)

    Article  Google Scholar 

  159. Bugarín, M.R., García Díaz-de-Villegas, J.M.: Improvements in railway switches. Proc. Inst. Mech. Eng. F 216, 275–286 (2002)

    Article  Google Scholar 

  160. Johansson, A., Nielsen, J., Bolmsvik, R.: Under sleeper pads-Influence on dynamic train-track interaction. Wear 265, 1479–1487 (2008)

    Article  Google Scholar 

  161. Kaewunrue, S.: Effectiveness of Using Elastomeric Pads to Mitigate Impact Vibration at an Urban Turnout Crossing. Springer, Berlin (2012)

    Google Scholar 

  162. Zhu, J.Y.: On the effect of varying stiffness under the switch rail on the wheel-rail dynamic characteristics of a high-speed turnout. Proc. Inst. Mech. Eng. F 220, 69–75 (2006)

    Article  Google Scholar 

  163. Kanbayashi, K.: Development of an active vibration control systems for high speed railway vehicles. In: Proceedings of the Jointed Railway Technology Symposium, pp. 499–502 (1998) (in Japanese)

  164. Sugahara, Y., Takigami, T., Sampei, M.: Suppressing vertical vibration in railway vehicles through primary suspension damping force control. J. Syst. Des. Dyn. 1, 212–223 (2007)

    Google Scholar 

  165. Sims, N.D., Stanway, R., Johnson, A.R.: Vibration control using smart fluids: a state-of-the-art review. Shock Vib. Dig. 31, 195–204 (1999)

    Article  Google Scholar 

  166. Aida, K.I., Tomioka, T., Akiyama, Y., et al.: Development of displacement-dependent rubber bush for yaw damper to prevent carbody vertical vibration. Foreign Roll Stock 30, 182–188 (2018) (in Chinese)

    Google Scholar 

  167. Fujimoto, H., Miyamoto, M.: Measures to reduce the lateral vibration of the tail car in a high speed train. Proc. Inst. Mech. Eng. F 210, 87–93 (1996)

    Article  Google Scholar 

  168. Gong, D., Zhou, J.S., Sun, W.J., et al.: On the resonant vibration of a flexible railway car body and its suppression with a dynamic vibration absorber. J. Vib. Control 19, 649–657 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program (Grant 2020YFA0710902) and the National Natural Science Foundation of China (Grants 11772275 and U19A20110). The authors would also like to acknowledge the Xplorer Prize for sponsoring the project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaiyun Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Executive Editor: Yujie Wei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jing, L., Wang, K. & Zhai, W. Impact vibration behavior of railway vehicles: a state-of-the-art overview. Acta Mech. Sin. 37, 1193–1221 (2021). https://doi.org/10.1007/s10409-021-01140-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-021-01140-9

Keywords

Navigation