Skip to main content
Log in

Magnetically induced electric potential in first-order composite beams incorporating couple stress and its flexoelectric effects

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

A new model of a first-order composite beam with flexoelectric and piezomagnetic layers is developed. The new model is under a transverse magnetic field and can capture the couple stress and its flexoelectric effects. The governing equations are obtained through a variational approach. To illustrate the new model, the static bending problem is analytically solved based on a Navier’s technique. The numerical results reveal that the extension, deflection, and shear deformation of the current or couple stress relevant flexoelectric model are always smaller than those of classical models at very small scale. It is also found that the electric potentials only appear with the presence of the flexoelectric effect for this non-piezoelectric composite beam model. Furthermore, various electric potential distributions can be manipulated by the particular magnetic fields, and remote/non-contact control at micro- and nano-scales can be realized by current functional composite beams.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Lam, D.C.C., Yang, F., Chong, A.C.M., et al.: Experiments and theory in strain gradient elasticity. J. Mech. Phys. Solids 51, 1477–1508 (2003)

    Article  Google Scholar 

  2. McFarland, A.W., Colton, J.S.: Role of material microstructure in plate stiffness with relevance to microcantilever sensors. J. Micromech. Microeng. 15, 1060–1067 (2005)

    Article  Google Scholar 

  3. Yang, J.S.: A review of a few topics in piezoelectricity. Appl. Mech. Rev. 59(6), 335–345 (2006)

    Article  Google Scholar 

  4. Yang, J.: Piezoelectric transformer structural modeling—a review. IEEE. Trans. Ultrason. Ferr. 54, 1154–1170 (2007)

    Article  Google Scholar 

  5. Kang, X., Yang, F.J., He, X.Y.: Nonlinearity analysis of piezoelectric micromachined ultrasonic transducers based on couple stress theory. Acta Mech. Sin. 28(1), 104–111 (2012)

    Article  MathSciNet  Google Scholar 

  6. Wang, W.J., Li, P., Jin, F.: Two-dimensional linear elasticity theory of magneto-electro-elastic plates considering surface and nonlocal effects for nanoscale device applications. Smart Mater. Struct. 25(095026), 1–15 (2016)

    Google Scholar 

  7. Li, N., Qian, Z., Yang, J.: Two-dimensional equations for piezoelectric thin-film acoustic wave resonators. Int. J. Solids Struct. 110, 170–177 (2017)

    Article  Google Scholar 

  8. Alibeigi, B., Beni, Y.T.: On the size-dependent magneto/electromechanical buckling of nanobeams. Eur. Phys. J. Plus 133, 398 (2018)

    Article  Google Scholar 

  9. Zhang, G.Y., Gao, X.L.: A new Bernoulli-Euler beam model based on a reformulated strain gradient elasticity theory. Math. Mech. Solids 25(3), 630–643 (2020)

    Article  MathSciNet  Google Scholar 

  10. Wang, L., Liu, S., Feng, X., et al.: Flexoelectronics of centrosymmetric semiconductors. Nat. Nanotechnol. 15, 661–667 (2020)

    Article  Google Scholar 

  11. Yao, M., Liu, P., Ma, L., et al.: Experimental study on broadband bistable energy harvester with L-shaped piezoelectric cantilever beam. Acta Mech. Sin. 36, 557–577 (2020)

    Article  Google Scholar 

  12. Wei, C.P., Xue, C.X.: Bending waves of a rectangular piezoelectric laminated beam. Acta Mech. Sin. 36(5), 1099–1108 (2020)

    Article  MathSciNet  Google Scholar 

  13. Qu, Y.L., Jin, F., Yang, J.S.: Effects of mechanical fields on mobile charges in a composite beam of flexoelectric dielectrics and semiconductors. J. Appl. Phys. 127, 194502 (2020)

    Article  Google Scholar 

  14. Saadatmand, M., Shooshtari, A.: Nonlinear vibration analysis of a circular micro-plate in two-sided NEMS/MEMS capacitive system by using harmonicbalance method. Acta Mech. Sin. 35, 129–143 (2019)

    Article  MathSciNet  Google Scholar 

  15. Hua, F., Liu, D.: On dissipative gradient effect in higher-order strain gradient plasticity: the modelling of surface passivation. Acta Mech. Sin. 36, 840–854 (2020)

    Article  MathSciNet  Google Scholar 

  16. Mindlin, R.D.: Micro-structure in linear elasticity. Arch. Ration. Mech. Anal. 16, 51–78 (1964)

    Article  MathSciNet  Google Scholar 

  17. Toupin, R.A.: Elastic materials with couple-stresses. Arch. Ration. Mech. Anal. 11, 385–414 (1962)

    Article  MathSciNet  Google Scholar 

  18. Mindlin, R.D.: Influence of couple-stresses on stress concentrations. Exp. Mech. 3, 1–7 (1963)

    Article  Google Scholar 

  19. Yang, F., Chong, A.C.M., Lam, D.C.C., et al.: Couple stress based strain gradient theory for elasticity. Int. J. Solids Struct. 39, 2731–2743 (2002)

    Article  Google Scholar 

  20. Ma, W., Cross, L.E.: Observation of the flexoelectric effect in relaxor Pb (Mg1/3Nb2/3) O3 ceramics. Appl. Phys. Lett. 78(19), 2920–2921 (2001)

    Article  Google Scholar 

  21. Wang, G.F., Yu, S.W., Feng, X.Q.: A piezoelectric constitutive theory with rotation gradient effects. Eur. J. Mech. A 23(3), 455–466 (2004)

    Article  Google Scholar 

  22. Hadjesfandiari, A.R.: Size-dependent piezoelectricity. Int. J. Solids Struct. 50(18), 2781–2791 (2013)

    Article  Google Scholar 

  23. Krichen, S., Sharma, P.: Flexoelectricity: a perspective on an unusual electromechanical coupling. J. Appl. Mech. 83(3): 030801, 1–5 (2016)

  24. Enakoutsa, K., Corte, A.D., Giorgio, I.: A model for elastic flexoelectric materials including strain gradient effects. Math. Mech. Solids 21, 242–254 (2016)

    Article  MathSciNet  Google Scholar 

  25. Li, A., Zhou, S., Qi, L., et al.: A flexoelectric theory with rotation gradient effects for elastic dielectrics. Model. Simul. Mater. Sc. 24, 015009 (2016)

    Article  Google Scholar 

  26. Qu, Y.L., Zhang, G.Y., Fan, Y.M., et al.: A non-classical theory of elastic dielectrics incorporating couple stress and quadrupole effects: part I–reconsideration of curvature-based flexoelectricity theory. Math. Mech. Solids 1–13 (2021). https://doi.org/10.1177/10812865211001533

  27. Zhang, G., Zheng, C., Mi, C., et al.: A microstructure-dependent Kirchhoff plate model based on a reformulated strain gradient elasticity theory. Mech. Adv. Mater. Struct. (2021) https://doi.org/10.1080/15376494.2020.1870054

  28. Yin, L., Qian, Q., Wang, L.: Size effect on the static behavior of electrostatically actuated microbeams. Acta Mech. Sin. 27(3), 445–451 (2001)

    Article  Google Scholar 

  29. Park, S.K., Gao, X.L.: Bernoulli-Euler beam model based on a modified couple stress theory. J. Micromech. Microeng. 16, 2355–2359 (2006)

    Article  Google Scholar 

  30. Zhang, R., Liang, X., Shen, S.: A Timoshenko dielectric beam model with flexoelectric effect. Meccanica 51(5), 1181–1188 (2016)

    Article  MathSciNet  Google Scholar 

  31. Zhang, G.Y., Qu, Y.L., Gao, X.L., et al.: A transversely isotropic magneto-electro-elastic Timoshenko beam model incorporating microstructure and foundation effects. Mech. Mater. 149(103412), 1–13 (2020)

    Google Scholar 

  32. Qu, Y.L., Li, P., Zhang, G.Y., et al.: A microstructure-dependent anisotropic magneto-electro-elastic Mindlin plate model based on an extended modified couple stress theory. Acta. Mech. 231, 4323–4350 (2020)

    Article  MathSciNet  Google Scholar 

  33. Yang, J.: The Mechanics of Piezoelectric Structures. World Scientific Publishing (2006)

  34. Qu, Y.L., Jin, F., Yang, J.S.: Magnetically induced charge motion in the bending of a beam with flexoelectric semiconductor and piezomagnetic dielectric layers. J. Appl. Phys. 129, 064503 (2021)

    Article  Google Scholar 

  35. Gao, X.L., Mall, S.: Variational solution for a cracked mosaic model of woven fabric composites. Int. J. Solids Struct. 38, 855–874 (2001)

    Article  Google Scholar 

  36. Ma, H.M., Gao, X.L., Reddy, J.N.: A microstructure-dependent Timoshenko beam model based on a modified couple stress theory. J. Mech. Phys. Solids 56, 3379–3391 (2008)

    Article  MathSciNet  Google Scholar 

  37. Zhang, Y.: Frequency spectra of nonlocal Timoshenko beams and an effective method of determining nonlocal effect. Int. J. Mech. Sci. 128–129, 572–582 (2017)

    Article  Google Scholar 

  38. Reddy, J.N.: Theory and Analysis of Elastic Plates and Shells. CRC Press, Boca Raton (2006)

    Book  Google Scholar 

  39. Zhang, Y., Zhao, Y.P.: Measuring the nonlocal effects of a micro/nanobeam by the shifts of resonant frequencies. Int. J. Solids Struct. 102, 259–266 (2016)

    Article  Google Scholar 

  40. Xu, L., Shen, S.: Size-Dependent Piezoelectricity and Elasticity Due to the Electric Field-Strain Gradient Coupling and Strain Gradient Elasticity. Int. J. Appl. Mech. 05, 1350015-1~16 (2013)

  41. Guo, J., Chen, J., Pan, E.: Static deformation of anisotropic layered magnetoelectroelastic plates based on modified couple-stress theory. Compos. Part B-Eng. 107, 84–96 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grants 12002086 and 12072253).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gongye Zhang.

Additional information

Executive Editor: Yujie Wei

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, G., Qu, Y., Guo, Z. et al. Magnetically induced electric potential in first-order composite beams incorporating couple stress and its flexoelectric effects. Acta Mech. Sin. 37, 1509–1519 (2021). https://doi.org/10.1007/s10409-021-01137-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-021-01137-4

Keywords

Navigation