Skip to main content
Log in

Numerical investigation of the effects of turbulence on the ignition process in a turbulent MILD flame

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

In this study, we conduct three-dimensional nonlinear large-eddy simulation to investigate the interaction between turbulence and reaction during the initial ignition process of a turbulent methane/hydrogen jet-in-hot-coflow flame under moderate or intense low-oxygen dilution (MILD) condition. Special focus has been placed on the spatial development of the flame and the temporal evolution of representative ignition spots that characterize the range of ignition behaviors observed in the case. Results show that the ignition process of the flame consists of four consecutive phases. Ignition occurs initially with relatively lean mixtures, and compared to the corresponding homogeneous stagnant adiabatic combustion, the loss of radical species associated with flow transportation causes a delay in ignition. The initial ignition spots formed during the autoignition phase provide sufficient conditions for the stabilization of the flame, including the provision of a variety of key radicals. Results also show that the flow convection accompanying the hot coflow dominated the slow flame propagation, and the turbulent mixing is of great importance for rapid flame propagation. These findings will broaden our knowledge of MILD combustion and provide useful insights into advanced ignition control.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Mastorakos, E., Baritaud, T.A., Poinsot, T.J.: Numerical simulations of autoignition in turbulent mixing flows. Combust. Flame 109, 198–223 (1997)

    Article  Google Scholar 

  2. Mastorakos, E.: Ignition of turbulent non-premixed flames. Prog. Energy Combust. Sci. 35, 57–97 (2009)

    Article  Google Scholar 

  3. Kerkemeier, S.G.: Direct numerical simulation of combustion on petascale platforms: Application to turbulent non-premixed hydrogen autoignition. Ph.D., ETH Zurich (2010)

  4. Schulz, O., Noiray, N.: Combustion regimes in sequential combustors: flame propagation and autoignition at elevated temperature and pressure. Combust. Flame 205, 253–268 (2019)

    Article  Google Scholar 

  5. Wünning, J.A., Wünning, J.G.: Flameless oxidation to reduce thermal no-formation. Prog. Energy Combust. Sci. 23, 81–94 (1997)

    Article  Google Scholar 

  6. Cavaliere, A., De Joannon, M.: Mild combustion. Prog. Energy Combust. Sci. 30, 329–366 (2004)

    Article  Google Scholar 

  7. Dally, B.B., Karpetis, A.N., Barlow, R.S.: Structure of turbulent non-premixed jet flames in a diluted hot coflow. Proc. Combust. Inst. 29, 1147–1154 (2002)

    Article  Google Scholar 

  8. Christo, F.C., Dally, B.B.: Modeling turbulent reacting jets issuing into a hot and diluted coflow. Combust. Flame 142, 117–129 (2005)

    Article  Google Scholar 

  9. Ihme, M., Zhang, J., He, G.W., et al.: Large-eddy simulation of a jet-in-hot-coflow burner operating in the oxygen-diluted combustion regime. Flow Turbul. Combust. 89, 449–464 (2012)

    Article  Google Scholar 

  10. Lu, H., Zou, C., Shao, S., et al.: Large-eddy simulation of MILD combustion using partially stirred reactor approach. Proc. Combust. Inst. 37, 4507–4518 (2019)

    Article  Google Scholar 

  11. Hilbert, R., Thévenin, D.: Autoignition of turbulent non-premixed flames investigated using direct numerical simulations. Combust. Flame 128, 22–37 (2002)

    Article  Google Scholar 

  12. Echekki, T., Chen, J.H.: Direct numerical simulation of autoignition in nonhomogeneous hydrogen-air mixtures. Combust. Flame 134, 169–191 (2003)

    Article  Google Scholar 

  13. Göktolga, M.U., Oijen, J.A., Goey, L.P.H.: 3D DNS of MILD combustion: a detailed analysis of heat loss effects, preferential diffusion, and flame formation mechanisms. Fuel 159, 784–795 (2015)

    Article  Google Scholar 

  14. Im, H.G., Chen, J.H., Law, C.K.: Ignition of hydrogen-air mixing layer in turbulent flows. Twenty-Seventh Symposium (International) on Combustion/The Combustion Institute (1998)

  15. Yoo, C.S., Sankaran, R., Chen, J.H.: Three-dimensional direct numerical simulation of a turbulent lifted hydrogen jet flame in heated coflow: flame stabilization and structure. J. Fluid Mech. 640, 453–481 (2009)

    Article  Google Scholar 

  16. Minamoto, Y., Dunstan, T.D., Swaminathan, N., et al.: DNS of EGR-type turbulent flame in MILD condition. Proc. Combust. Inst. 34, 3231–3238 (2013)

    Article  Google Scholar 

  17. Chen, Z., Reddy, V., Ruan, S., et al.: Simulation of MILD combustion using perfectly stirred reactor model. Proc. Combust. Inst. 36, 4279–4286 (2017)

    Article  Google Scholar 

  18. Wan, Y., Wang, N., Zhang, L., et al.: Applications of multi-dimensional schemes on unstructured grids for high-accuracy heat flux prediction. Acta Mech. Sin. 36, 57–71 (2020)

    Article  MathSciNet  Google Scholar 

  19. Ye, Z., Wang, X., Chen, Z., et al.: Unsteady aerodynamic characteristics of a horizontal wind turbine under yaw and dynamic yawing. Acta Mech. Sin. 36, 320–338 (2020)

    Article  MathSciNet  Google Scholar 

  20. Fan, W., Zhong, F., Ma, S., et al.: Numerical study of convective heat transfer of a supersonic combustor with varied inlet flow conditions. Acta Mech. Sin. 35, 943–953 (2019)

    Article  Google Scholar 

  21. Lu, H., Rutland, C.J.: Structural subgrid-scale modeling for large-eddy simulation: A review. Acta Mech. Sin. 32, 567–578 (2016)

    Article  MathSciNet  Google Scholar 

  22. Tsang, C.W., Trujillo, M.F., Rutland, C.J.: Large-eddy simulation of shear flows and high-speed vaporizing liquid fuel sprays. Comput. Fluids 105, 262–279 (2014)

    Article  MathSciNet  Google Scholar 

  23. Lu, H., Chen, W., Zou, C., et al.: Large-eddy simulation of Sandia Flame F using structural subgrid-scale models and partially-stirred-reactor approach. Phys. Fluids 31, 045109 (2019)

    Article  Google Scholar 

  24. Tafur, B., Daniele, E., Stoevesandt, B., et al.: On the calibration of rotational augmentation models for wind turbine load estimation by means of CFD simulations. Acta Mech. Sin. 36, 306–319 (2020)

    Article  MathSciNet  Google Scholar 

  25. Shao, S., Lu, H., Wang, Z., et al.: Large-eddy simulation of high-speed vaporizing liquid-fuel spray using mixed gradient-type structural subgrid-scale model. Combust. Sci. Technol. 193, 762–783 (2021)

    Article  Google Scholar 

  26. Xiong, Y., Li, J., Liu, Z., et al.: The influence of sub-grid scale motions on particle collision in homogeneous isotropic turbulence. Acta Mech. Sin. 34, 22–36 (2018)

    Article  MathSciNet  Google Scholar 

  27. Lu, H., Rutland, C.J., Smith, L.M.: A priori tests of one-equation LES modeling of rotating turbulence. J. Turbul. 8, 1–27 (2007)

    Article  MathSciNet  Google Scholar 

  28. Lu, H., Rutland, C.J., Smith, L.M.: A posteriori tests of one-equation LES modeling of rotating turbulence. Int. J. Mod. Phys. C 19, 1949–1964 (2008)

    Article  Google Scholar 

  29. Menon, S., Yeung, P.K., Kim, W.W.: Effect of subgrid models on the computed interscale energy transfer in isotropic turbulence. Comput. Fluids 25, 165–180 (1996)

    Article  Google Scholar 

  30. Wang, H., Zhou, H., Ren, Z., et al.: Transported PDF simulation of turbulent \(\text{ CH}_4\)/\(\text{ H}_2\) flames under MILD conditions with particle-level sensitivity analysis. Proc. Combust. Inst. 37, 4487–4495 (2019)

    Article  Google Scholar 

  31. Zhou, H., Yang, T., Dally, B., et al.: LES/TPDF investigation of the role of reaction and diffusion timescales in the stabilization of a jet-in-hot-coflow \(\text{ CH}_4\)/\(\text{ H}_2\) flame. Combust. Flame 211, 477–492 (2020)

    Article  Google Scholar 

  32. Afarin, Y., Tabejamaat, S.: The effect of fuel inlet turbulence intensity on \(\text{ H}_2\)/\(\text{ CH}_4\) flame structure of MILD combustion using the LES method. Combust. Theory Model. 17, 383–410 (2013)

    Article  Google Scholar 

  33. Nordin, P.: Complex chemistry modeling of diesel spray combustion. Ph.D., Chalmer University of Technology (2001)

  34. Chen, J.Y.: Stochastic modeling of partially stirred reactors. Combust. Sci. Technol. 122, 63–94 (1997)

    Article  Google Scholar 

  35. Golovitchev, V.I., Atarashiya, K., Tanaka, K., et al.: Towards universal EDC-based combustion model for compression ignited engine simulations. SAE Technical Paper (2003-01-1849) (2003)

  36. Kazakov, A., Frenklach, M.: DRM19 reaction mechanism. http://www.me.berkeley.edu/drm/ (1994)

  37. Kulkarni, R.M.: Large eddy simulation of autoignition in turbulent flows. Ph.D., Technical University of Munich (2013)

  38. Deshaies, B., Silva, L.F.F., René-Corail, M.: Some generic problems related to combustion of hydrogen and air in supersonic flows. In: Champion, M., Deshaies, B. (eds.) IUTAM Symposium on Combustion in Supersonic Flows, Proceedings of the IUTAM Symposium held in Poitiers, France, October 1995, pp. 15–42 (1997)

  39. Boivin, P., Sánchez, A., Williams, F.: Analytical prediction of syngas induction times. Combust. Flame 176, 489–499 (2017)

    Article  Google Scholar 

  40. Brackmann, C., Nygren, J., Bai, X., et al.: Laser-induced fluorescence of formaldehyde in combustion using third harmonic Nd:YAG laser excitation. Spectrochim. Acta Part A 59, 3347–3356 (2003)

    Article  Google Scholar 

  41. Gordon, R.L., Masri, A.R., Mastorakos, E.: Simultaneous Rayleigh temperature, OH- and \(\text{ CH}_2\text{ O }\)-LIF imaging of methane jets in a vitiated coflow. Combust. Flame 155, 181–195 (2008)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Dr. Songze Chen for stimulating discussions. This research was supported by the National Natural Science Foundation of China (Grant 51776082). Computing resources were provided by the National Supercomputer Center in Guangzhou

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hao Lu or Chun Zou.

Additional information

Executive Editor: Yue Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qian, X., Lu, H., Zou, C. et al. Numerical investigation of the effects of turbulence on the ignition process in a turbulent MILD flame. Acta Mech. Sin. 37, 1299–1317 (2021). https://doi.org/10.1007/s10409-021-01126-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-021-01126-7

Keywords

Navigation