Skip to main content
Log in

Studies on theory and modeling of droplet and spray combustion in China: a review

  • Review Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

Combustion phenomena were discovered still in far ancient time of China. From the 50’s of the last century, owing to the fast development of energy and power, aeronautical and astronautical, chemical and metallurgical engineering, combustion theory started to be studied in China. The Chinese scientists studied the theory of ignition, laminar flame propagation, droplet combustion, and spray combustion. Later, from the 80’s of the last century, numerical modeling of combustion started to be studied in China, including turbulence modeling, turbulent combustion modeling, two-phase turbulence modeling and two-phase combustion modeling, in the approaches of Reynolds Navier–Stokes (RANS) modeling, large-eddy simulation (LES), and direct numerical simulation (DNS) of combustion. Due to the limitation of a paper size, this paper gives only a review of studies on theory and modeling of droplet and spray combustion in China.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26

Similar content being viewed by others

References

  1. Zhou, L.X.: Combustion theory and dynamics of reacting fluids. Science Press, Beijing (1986) (in Chinese)

    Google Scholar 

  2. Zhou, L.X.: Evaporation and combustion of hydrocarbon individual droplets and liquid fuel spray in Air,Ph.D. dissertation, department of physics and mechanics, Leningrad Polytechnic University, USSR (1961) (in Russian)

  3. Godsave, G.A.E.: Studies of the combustion of drops in a fuel spray-the burning of single drops of fuel, Fourth Symposium (International) on Combustion, Williams and Wilkins, Baltimore Md, 818–830 (1953)

  4. Spalding, D.B.: The combustion of liquid fuels, Fourth Symposium (International) on Combustion, Williams and Wilkins, Baltimore Md, 847–864 (1953)

  5. Law, C.K.: Recent advances in droplet vaporization and combustion. Prog. Energy Combust. Sci. 8, 171–201 (1982)

    Article  Google Scholar 

  6. Frössling, N.: Über die verdunstung fallender trofen. Gerlands Beiträge zur Geophys 52, 170–216 (1938)

    Google Scholar 

  7. Garner, F.H., Keey, R.B.: Mass-transfer from single solid spheres—I: transfer at low reynolds numbers. Chem. Eng. Sci. 9, 119–129 (1958)

    Article  Google Scholar 

  8. Agoston, G.A., Wise, H., Rosser, W.A.: Dynamic factors affecting the combustion of liquid spheres, Sixth Symposium (International) on Combustion, Yale University, The Combustion Institute, Reinhold Publishing Cooperation, 708–717 (1957)

  9. Zhou, L.X., Li, K.: Analytical and numerical studies on a single-droplet evaporation and combustion under forced convection. Acta. Mech. Sin. 31, 523–530 (2015)

    Article  MathSciNet  Google Scholar 

  10. Mercier, X., Orain, M., Grishch, F.: Investigation of droplet combustion in strained counter-flow diffusion flames using planar laser-induced fluorescence. Appl. Phys. B 88, 151–160 (2007)

    Article  Google Scholar 

  11. Zhuang, F.C., Liu, X.D.: On Theory of unsteady decomposition combustion for a liquid propellant droplet at high temperature and pressure. Acta Aeronautica et Astronautica Sinica 6, 443–448 (1985)

    Google Scholar 

  12. Priem, R.J., Heidman, M.F.: Vaporization of propellants in rocket engines. ARS J. 29, 836–842 (1959)

    Article  Google Scholar 

  13. Gu, Y.Q.: The effect of droplet size on the flame length and completeness of spray combustion. Sci. Bull. 6, 275–278 (1966)

    Google Scholar 

  14. Miesse, C.C.: A theory of spray combustion. Ind. Eng. Chem. 50, 1303–1304 (1958)

    Article  Google Scholar 

  15. Zhou, L.X., Wang, F.: Studies on two-mode spray combustion. Int. J. Astronaut. Aeronaut. Eng. 2, 1–9 (2017)

    Google Scholar 

  16. Chekalin, E.K.: Spray flame propagation. J. Tech. Phys. 3(6) (1960) (in Russian)

  17. Zhou, L.X.: Theory and modeling of dispersed multiphase turbulent reacting flows, B-H Elsevier and Tsinghua University Press (2018)

  18. Xu, R., Li, J.H., Zhao, J.X., et al.: Effects of turbulent combustion models on spray combustion flow of dual-stage swirl combustor. J. Propuls. Technol. 34, 375–382 (2013). (in Chinese)

    Google Scholar 

  19. Xu, R., Zhao, J.X., Wang, S.F., et al.: Application of turbulent combustion models in spray combustion of an aero-engine. J. Aerosp. Power 29, 2845–2853 (2014). (in Chinese)

    Google Scholar 

  20. Hu, Y., Kai, R., Kurose, R., et al.: Large eddy simulation of a partially pre-vaporized ethanol reacting spray using the multiphase DTF/flamelet model. Int. J. Multiph. Flow 125(103216), 1–12 (2020)

    MathSciNet  Google Scholar 

  21. Cheng, Y.Z., Jin, T., Luo, K., et al.: Large eddy simulations of spray combustion instability in an aero-engine combustor at elevated temperature and pressure. Aerosp. Sci. Technol. 108, 106329 (2021)

    Article  Google Scholar 

  22. Paulhiac, D., Cuenot, B., Riber, E., et al.: Analysis of the spray flame structure in a lab-scale burner using large-eddy simulation and discrete particle simulation. Combust. Flame 212, 25–38 (2020)

    Article  Google Scholar 

  23. Tekgul, B., Kahila, H., et al.: Large-eddy simulation of dual-fuel spray ignition at different ambient temperatures. Combust. Flame 215, 51–65 (2020)

    Article  Google Scholar 

  24. Ong, J.C., Pang, K.M., et al.: Large-eddy simulation of n-dodecane spray flame: effects of nozzle diameters on autoignition at varying ambient temperatures. Proc. Combust. Inst. 38, 3427–3434 (2021)

    Article  Google Scholar 

  25. Wang, Q., Jaravel, T., Ihme, M.: Assessment of spray combustion models in large-eddy simulations of a polydispersed acetone spray flame. Proc. Combust. Inst. 37, 3335–3344 (2019)

    Article  Google Scholar 

  26. Desantes, J.M., Garcia-Oliver, J.M., et al.: Application of a flamelet-based CFD combustion model to the LES simulation of a diesel-like reacting spray. Comput. Fluids 200, 104419 (2020)

    Article  MathSciNet  Google Scholar 

  27. Salehi, F., Ghijib, M., Chen, L.F.: Large eddy simulation of high pressure spray with the focus on injection pressure. Int. J. Heat Fluid Flow 82, 108551 (2020)

    Article  Google Scholar 

  28. Zhou, L.X.: Development of SOM combustion model for Reynolds-averaged and large-eddy simulation of turbulent combustion and its validation by DNS. Sci. China E-51, 1073–1086 (2008)

    Article  Google Scholar 

  29. Chen, J., Zhu, M.M., Liu, M.H., et al.: Large-eddy simulation of a piloted ethanol-air spray flame. J. Propuls. Technol. (in Chinese) 36, 276–284 (2015)

    Google Scholar 

  30. Yang, J.S.: A dynamic second-order moment closure model for large-eddy simulation of turbulent combustion, Ph.D. Dissertation, Zhejiang University, Hangzhou, China (2016)

  31. Wang, H.O., Luo, K., et al.: A DNS study of hydrogen/air swirling premixed flames with different equivalence ratios. Int. J. Hydrog. Energy 37, 5246–5256 (2012)

    Article  Google Scholar 

  32. Luo, K., Pitsch, H., et al.: Direct numerical simulations and analysis of three-dimensional n-heptane spray flames in a model swirl combustor. Proc. Combust. Inst. 33, 2143–2152 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (Grant 51390493).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lixing Zhou.

Additional information

Executive Editor: Guowei He.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, L. Studies on theory and modeling of droplet and spray combustion in China: a review. Acta Mech. Sin. 37, 1031–1040 (2021). https://doi.org/10.1007/s10409-021-01124-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-021-01124-9

Keywords

Navigation