Skip to main content
Log in

Nonlinear dynamical analysis of some microelectromechanical resonators with internal damping

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

In this paper, a new Kelvin-Voigt type beam model of a microelectromechanical resonator made of power-law materials taking into account internal strain-rate damping is proposed and the corresponding lumped-parameter model is derived. Analytical formulas of the lumped parameters in the model are presented. And the pull-in solution is analyzed based on the lumped-parameter model. It is demonstrated analytically and numerically that the internal damping plays an important role in the pull-in solution as well as in determination of the amplitudes and frequencies of the resonator. The hysteresis loops are provided for this model with initial conditions using numerical simulations. The approximation of the electrostatic force in the lumped-parameter model can describe the relations between amplitudes and frequencies with different values of the stiffness and damping coefficients quite well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Younis, M.I.: MEMS Linear and Nonlinear Statics and Dynamics. Springer, New York (2011)

    Book  Google Scholar 

  2. Kostsov, E.G.: Status and prospects of micro-and nanoelectromechanics. Optoelectron. Instrum. Proc. 45(3), 189–226 (2009) https://doi.org/10.3103/S8756699009030017

  3. Greenberg,Ya.S., Pashkin, Yu.A., Il’ichev E.: Nanomechanical resonators. Phys.-Usp. 55(4), 382–407 (2012) https://doi.org/10.3367/UFNr.0182.201204c.0407

  4. Ikizoglu, S., Ozgul, A.: Design considerations of a MEMS cantilever beam switch for pull-in under electrostatic force generated by means of vibrations. J. Vibroeng. 16(3), 1106–1113 (2014)

    Google Scholar 

  5. Hollomon, J.H.: Tensile deformation. Trans. AIME. 162, 268–290 (1945)

    Google Scholar 

  6. Kalpakjian, S., Schmid, S.R.: Manufacturing Engineering and Technology, 7th edn. Pearson Education South Asia, Singapore (2014)

    Google Scholar 

  7. Lucas, S., Kis-Sion, K., Pinel, J., et al.: Polysilicon cantilever beam using surface micromachining technology for application in microswitches. J. Micromech. Microeng., pp. 159–161. (1997) https://doi.org/10.1088/0960-1317/7/3/021

  8. Sharpe, W.N., Jr.Hemker, K.J., Edwards, R.L.: Mechanical Properties of MEMS Materials. Johns Hopkins University. AFRL-IF-RS-TR-2004-76 Final Technical Report (2004)

  9. Ludwik, P.: Elemente der Technologischen Maechanik. Springer, Berlin (1909)

    Book  Google Scholar 

  10. Wei, D., Liu, Y.: Analytic and finite element solutions of the power-law Euler-Bernoulli beams. Finite Elem. Anal. Des. 52, 31–40 (2012) https://doi.org/10.1016/j.finel.2011.12.007

  11. Saetiew, W., Chucheepsakul, S.: Post-buckling of linearly tapered column made of nonlinear elastic materials obeying the generalized Ludwick constitutive law. Int. J. Mech. Sci. 65(1), 83–96 (2012) https://doi.org/10.1016/j.ijmecsci.2012.09.006

  12. Singh, K.K.: Strain hardening behaviour of 316L austenitic stainless steel. Mater. Sci. Technol. 20(9), 1134–1142 (2004) https://doi.org/10.1179/026708304225022089

  13. Callister, W.D., Rethwisch, D.G.: Fundamentals of Materials Science and Engineering. An Integrated Approach, 5th edn. Wiley, New York (2015)

  14. Kalpakjian, S., Schmid, S.R.: Manufacturing processes for engineering materials, 5th edn., Pearson Education South Asia, Singapore, online book (2008) https://fac.ksu.edu.sa/sites/default/files/ch_stress-strain_relations.pdf Accessed 21 April 2021

  15. Kostsov, E.G., Fadeev, S.I.: New microelectromechanical cavities for gigahertz frequencies. Optoelectron. Instrum. Proc. 49, 204–10 (2013) https://doi.org/10.3103/S8756699013020143

  16. Kostsov, E.G., Fadeev, S.I.: On the functioning of a VHF microelectromechanical resonator. Sib. Zh. Ind. Mat. 16(4), 75–86 (2013)

    MathSciNet  MATH  Google Scholar 

  17. Fadeev, S.I., Kostsov, E.G., Pimanov, D.O.: Study of the mathematical model for a microelectromechanical resonator of the Platform type, Computational Techniques (Russian). Comput. Technol 21(2), 63–87 (2016)

    MATH  Google Scholar 

  18. Dorzhiev V.Y.: Development and research of low-g electrostatic microelectromechanical generators. The dissertation for the degree of candidate of technical sciences. Novosibirsk. (2016)

  19. Banks, H.T., Inman, D.J.: On Damping Mechanisms in Beams. J. Appl. Mech. 58(3), 716–723 (1991) https://doi.org/10.1115/1.2897253

  20. Sadeqi, A., Moradi, S.: Vibration analysis of elastic beams with unconstrained partial viscoelastic layer. Int. J. Acous. Vibr. 23 (1), 65–73 (2018) https://doi.org/10.20855/ijav.2018.23.11138

  21. Erturk, A., Inman, D.J.: On mechanical modeling of cantilevered piezoelectric vibration energy harvesters. J. Intell. Mater. Syst. Struct. 19(11), 1311–1325 (2008) https://doi.org/10.1177/1045389X07085639

  22. Skrzypacz, P., Nurakhmetov, D., Wei, D.: The lumped parameter models for power-Law Euler-Bernoulli Beams. Acta Mech. Sin. 36, 160–175. (2020) https://doi.org/10.1007/s10409-019-00912-8

  23. Nurakhmetov, D., Aniyarov, A., Zhang, D., et al.: Some lumped-parameter models for the power-law Euler-Bernoulli beam with external and internal damping. (submitted for a journal)

  24. Shu, Y.C., Lien, I.C.: Analysis of power output for piezoelectric energy harvesting systems. Smart Mater. Struct. 15(6), 1499–1512 (2006) https://doi.org/10.1088/0964-1726/15/6/001

  25. Hu, G., Tang, L., Liang, J., et al.: Modelling of a cantilevered energy harvester with partial piezoelectric coverage and shunted to practical interface circuits. J. Intell. Mater. Syst. Struct. 30(13), 1896–1912 (2019) https://doi.org/10.1177/1045389X19849269

  26. Hu, G., Tang, L., Liang, J., et al.: A tapered beam piezoelectric energy harvester shunted to P-SSHI interface. In: Proc. SPIE 11376, Active and Passive Smart Structures and Integrated Systems XIV, 1137606 (2020) https://doi.org/10.1117/12.2554871

  27. Nathanson, H., Newell, W., Wickstrom, R., et al.: The resonant gate transistor. IEEE Trans. Electron Devices 14(3), 117–133 (1967) https://doi.org/10.1109/T-ED.1967.15912

  28. Zhang, W., Yan, H., Peng, Z.K., et al.: Electrostatic pull-in instability in MEMS/NEMS: a review. Sens. Actuators A 214,187–218 (2014) https://doi.org/10.1016/j.sna.2014.04.025

  29. Flores, G.: On the dynamic pull-in instability in a mass-spring model of electrostatically actuated MEMS devices. J. Differ. Equ. 262(6), 3597–3609 (2017) https://doi.org/10.1016/j.jde.2016.11.037

  30. Skrzypacz, P., Kadyrov, S., Nurakhmetov, D., et al.: Analysis of dynamic pull-in voltage of a graphene MEMS model.Nonlinear Anal. Real World Appl. 45, 581–589 (2019) https://doi.org/10.1016/j.nonrwa.2018.07.025

  31. Nurakhmetov, D., Skrzypacz, P., Wei, D.: Vibrations a microelectromechanical resonator of the platform type made of power-law materials. Mathematics and its applications. International Conference in honor of the 90th of Sergey K. Godunov. The Book of Abstracts (August 4-10, 2019, Novosibirsk, Russia). Novosibirsk: Publishing House of the Institute of Mathematics, P.287 (2019)

  32. Wei, D., Skrzypacz, P., Yu, X.: Nonlinear waves in rods and beams of power-law materials. J. Appl. Math. 2095425, 1–6 (2017) https://doi.org/10.1155/2017/2095425

  33. Panovko, Ya.G.: Internal Friction in Vibrations of Elastic Systems [in Russian]. Fizmatgiz. Moscow (1960) [in Russian]

  34. Tiwari, S., Candler, R.N.: Using flexural MEMS to study and exploit nonlinearities: a review. J. Micromech. Microeng. 29(8) 08002, 1–13 (2019) https://doi.org/10.1088/1361-6439/ab23e2

Download references

Acknowledgements

This work was supported by the Nazarbayev University research, rapid response fixed astronomical telescope for gamma ray bust observation (Grant OPCRP2020002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Almir Aniyarov.

Additional information

Executive Editor:}} \communicated{\xm{Executive Editor Executive Editor: Lifeng Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, D., Nurakhmetov, D., Spitas, C. et al. Nonlinear dynamical analysis of some microelectromechanical resonators with internal damping. Acta Mech. Sin. 37, 1457–1466 (2021). https://doi.org/10.1007/s10409-021-01114-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-021-01114-x

Keywords

Navigation