Skip to main content
Log in

Coupling dynamic characteristics of simplified model for tethered satellite system

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

The evolution of the attitude angle and the mechanical energy exchange between the bus system and the solar sail via the connecting wires are the main manifestations of the coupling dynamic effects on the orbit evolution, the attitude adjusting and the flexible vibration of the tethered satellite system. To investigate attitude evolution of the tethered system and the mechanical energy transfer/loss characteristics between the bus system and the solar sail via the connecting wires, a structure-preserving method is developed in this paper. Simplifying the tethered satellite system as a composite structure consisting of a particle and a flexible thin panel connected by four special springs, the dynamic model is deduced via the Hamiltonian variational principle firstly. Then, a structure-preserving approach that connects the symplectic Runge–Kutta method and the multi-symplectic method is developed. The excellent structure-preserving property of the numerical scheme constructed is presented to illustrate the credibility of the numerical results obtained by the constructed structure-preserving approach. From the numerical results on the mechanical energy transfer/loss in the composite structure, it can be found that the mechanical energy transfer tendency in the tethered system is dependent of the initial attitude angle of the system while the total mechanical energy loss of the system is almost independent of the initial attitude angle. In addition, the special stiffness range of the spring is found in the attitude angle evolution of the system, which provides a structural parameter design window for the connecting wires, that is, the duration needed to arrive the stable attitude is short when the stiffness of the wire is designed in this special range.

Graphic Abstract

The evolution of the attitude angle and the mechanical energy exchange between the bus system and the solar sail via the connecting wires are the main manifestations of the coupling dynamic effects on the orbit evolution, the attitude adjusting and the flexible vibration of the tethered satellite system. To investigate attitude evolution of the tethered system and the mechanical energy transfer/loss characteristics between the bus system and the solar sail via the connecting wires, a structure-preserving method is developed in this paper. Simplifying the tethered satellite system as a composite structure consisting of a particle and a flexible thin panel connected by four special springs, the dynamic model is deduced via the Hamiltonian variational principle firstly. Then, a structure-preserving approach that connects the symplectic Runge-Kutta method and the multi-symplectic method is developed. The excellent structure-preserving property of the numerical scheme constructed is presented to illustrate the credibility of the numerical results obtained by the constructed structure-preserving approach. From the numerical results on the mechanical energy transfer/loss in the composite structure, it can be found that the mechanical energy transfer tendency in the tethered system is dependent of the initial attitude angle of the system while the total mechanical energy loss of the system is almost independent of the initial attitude angle. In addition, the special stiffness range of the spring is found in the attitude angle evolution of the system, which provides a structural parameter design window for the connecting wires, that is, the duration needed to arrive the stable attitude is short when the stiffness of the wire is designed in this special range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Glaser, P.E.: Power from the sun: its future. Science 162(3856), 857–861 (1968)

    Article  Google Scholar 

  2. Yu, B.S., Wen, H., Jin, D.P.: Review of deployment technology for tethered satellite systems. Acta Mech. Sin. 34(4), 754–768 (2018). https://doi.org/10.1007/s10409-018-0752-5

    Article  Google Scholar 

  3. Kalaghan, P., Arnold, D., Colombo, G., et al.: Study of the dynamics of a tethered satellite system (Skyhook). Final Report Contract NAS8 32199 (1978)

  4. Carroll, J.A.: Tether applications in space transportation. Acta Astronaut. 13(4), 165–174 (1986). https://doi.org/10.1016/0094-5765(86)90061-5

    Article  MATH  Google Scholar 

  5. Guerriero, L., Vallerani, E.: Potential tether applications to space station operations. Acta Astronaut. 14, 23–32 (1986). https://doi.org/10.1016/0094-5765(86)90107-4

    Article  Google Scholar 

  6. Dematteis, G., Desocio, L.M.: Dynamics of a tethered satellite subjected to aerodynamic forces. J. Guid. Control Dyn. 14(6), 1129–1135 (1991). https://doi.org/10.2514/3.20767

    Article  Google Scholar 

  7. Dobrowolny, M., Stone, N.: A technical overview of TSS-1: the first tethered-satellite system mission. Il Nuovo Cimento C 17(1), 1–12 (1994)

    Article  Google Scholar 

  8. Glaese, J.R.: Tethered satellite system (TSS) dynamics assessments and analysis, TSS-1R Post Flight Data Evaluation. NASA NASA-CR-201138 (1996)

  9. Lavoie, A.R.: Tethered satellite system (TSS-1R)-post flight (STS-75) engineering performance report. NASA JA-2422 (1996)

  10. Cartmell, M.P., McKenzie, D.J.: A review of space tether research. Prog. Aerosp. Sci. 44(1), 1–21 (2008). https://doi.org/10.1016/j.paerosci.2007.08.002

    Article  Google Scholar 

  11. Leamy, M.J., Noor, A.K., Wasfy, T.M.: Dynamic simulation of a tethered satellite system using finite elements and fuzzy sets. Comput. Methods Appl. Mech. Eng. 190(37–38), 4847–4870 (2001). https://doi.org/10.1016/s0045-7825(00)00352-2

    Article  MATH  Google Scholar 

  12. Mankala, K.K., Agrawal, S.K.: Dynamic modeling and simulation of satellite tethered systems. J. Vib. Acoust.-Trans. ASME 127(2), 144–156 (2005). https://doi.org/10.1115/1.1891811

    Article  Google Scholar 

  13. Zhao, J., Cai, Z.Q.: Nonlinear dynamics and simulation of multi-tethered satellite formations in Halo orbits. Acta Astronaut. 63(5–6), 673–681 (2008). https://doi.org/10.1016/j.actaastro.2008.04.007

    Article  Google Scholar 

  14. Jung, W., Mazzoleni, A.P., Chung, J.: Nonlinear dynamic analysis of a three-body tethered satellite system with deployment/retrieval. Nonlinear Dyn. 82(3), 1127–1144 (2015). https://doi.org/10.1007/s11071-015-2221-z

    Article  MathSciNet  MATH  Google Scholar 

  15. Yu, B.S., Jin, D.P., Wen, H.: Nonlinear dynamics of flexible tethered satellite system subject to space environment. Appl. Math. Mech.-English Edition 37(4), 485–500 (2016). https://doi.org/10.1007/s10483-016-2049-9

    Article  MathSciNet  Google Scholar 

  16. Shan, M.H., Guo, J., Gill, E.: Deployment dynamics of tethered-net for space debris removal. Acta Astronaut. 132, 293–302 (2017). https://doi.org/10.1016/j.actaastro.2017.01.001

    Article  Google Scholar 

  17. Kumar, K.D.: Review of dynamics and control of nonelectrodynamic tethered satellite systems. J. Spacecr. Rockets 43(4), 705–720 (2006). https://doi.org/10.2514/1.5479

    Article  Google Scholar 

  18. Wen, H., Jin, D.P., Hu, H.Y.: Advances in dynamics and control of tethered satellite systems. Acta Mech. Sin. 24(3), 229–241 (2008). https://doi.org/10.1007/s10409-008-0159-9

    Article  MATH  Google Scholar 

  19. Misra, A.K.: Dynamics and control of tethered satellite systems. Acta Astronaut. 63(11–12), 1169–1177 (2008). https://doi.org/10.1016/j.actaastro.2008.06.020

    Article  Google Scholar 

  20. Sun, L., Zhao, G., Huang, H.: Stability and control of tethered satellite with chemical propulsion in orbital plane. Nonlinear Dyn. 74(4), 1113–1131 (2013). https://doi.org/10.1007/s11071-013-1028-z

    Article  MATH  Google Scholar 

  21. Ma, Z., Sun, G.: Adaptive sliding mode control of tethered satellite deployment with input limitation. Acta Astronaut. 127, 67–75 (2016). https://doi.org/10.1016/j.actaastro.2016.05.022

    Article  Google Scholar 

  22. Hu, W., Zhang, C., Deng, Z.: Vibration and elastic wave propagation in spatial flexible damping panel attached to four special springs. Commun. Nonlinear Sci. Numer. Simul. (2020). https://doi.org/10.1016/j.cnsns.2020.105199

    Article  MathSciNet  MATH  Google Scholar 

  23. Hu, W., Deng, Z., Han, S., et al.: Generalized multi-symplectic integrators for a class of Hamiltonian nonlinear wave PDEs. J. Comput. Phys. 235, 394–406 (2013). https://doi.org/10.1016/j.jcp.2012.10.032

    Article  MathSciNet  MATH  Google Scholar 

  24. Hu, W., Wang, Z., Zhao, Y., et al.: Symmetry breaking of infinite-dimensional dynamic system. Appl. Math. Lett. 103, 10 (2020). https://doi.org/10.1016/j.aml.2019.106207

    Article  MathSciNet  MATH  Google Scholar 

  25. Hu, W., Deng, Z., Yin, T.: Almost structure-preserving analysis for weakly linear damping nonlinear Schrödinger equation with periodic perturbation. Commun. Nonlinear Sci. Numer. Simul. 42, 298–312 (2017). https://doi.org/10.1016/j.cnsns.2016.05.024

    Article  MathSciNet  MATH  Google Scholar 

  26. Bridges, T.J.: Multi-symplectic structures and wave propagation. Math. Proc. Camb. Philos. Soc. 121(1), 147–190 (1997). https://doi.org/10.1017/s0305004196001429

    Article  MathSciNet  MATH  Google Scholar 

  27. Feng, K.: On difference schemes and symplectic geometry. In: Proceeding of the 1984 Beijing Symposium on Differential Geometry and Differential Equations, Beijing 1984, pp. 42–58. Science Press

  28. Hu, W., Ye, J., Deng, Z.: Internal resonance of a flexible beam in a spatial tethered system. J. Sound Vib. (2020). https://doi.org/10.1016/j.jsv.2020.115286

    Article  Google Scholar 

  29. Hu, W., Yu, L., Deng, Z.: Minimum control energy of spatial beam with assumed attitude adjustment target. Acta Mech. Solida Sin. 33(1), 51–60 (2020). https://doi.org/10.1007/s10338-019-00132-4

    Article  Google Scholar 

  30. Hu, W., Huai Y., Xu M., et al.: Mechanoelectrical flexible hub-beam model of ionic-type solvent-free nanofluids. Mech. Syst. Signal Process. 159, (2021). https://doi.org/10.1016/j.ymssp.2021.107833

  31. Sasaki, S., Tanaka, K., Higuchi, K., et al.: A new concept of solar power satellite: tethered-SPS. Acta Astronaut. 60(3), 153–165 (2007). https://doi.org/10.1016/j.actaastro.2006.07.010

    Article  Google Scholar 

  32. Hu, W., Song, M., Deng, Z.: Energy dissipation/transfer and stable attitude of spatial on-orbit tethered system. J. Sound Vib. 412, 58–73 (2018). https://doi.org/10.1016/j.jsv.2017.09.032

    Article  Google Scholar 

  33. Kirchhoff, G.R.: Über das Gleichgewicht und die Bewegung einer elastischen Scheibe. Journal für die reine und angewandte Mathematik 40, 51–88 (1850)

    MathSciNet  Google Scholar 

  34. Xu, X.J., Deng, Z.C., Meng, J.M., et al.: Bending and vibration analysis of generalized gradient elastic plates. Acta Mech. 225(12), 3463–3482 (2014). https://doi.org/10.1007/s00707-014-1142-0

    Article  MathSciNet  MATH  Google Scholar 

  35. Liu, C.S., Li, B.T.: An R(x)-orthonormal theory for the vibration performance of a non-smooth symmetric composite beam with complex interface. Acta. Mech. Sin. 35(1), 228–241 (2019). https://doi.org/10.1007/s10409-018-0799-3

    Article  MathSciNet  Google Scholar 

  36. Hu, W., Xu, M., Song, J., et al.: Coupling dynamic behaviors of flexible stretching hub-beam system. Mech. Syst. Signal Process. 151, (2021). https://doi.org/10.1016/j.ymssp.2020.107389

    Article  Google Scholar 

  37. Sanz-Serna, J.M.: Runge–Kutta schemes for Hamiltonian systems. BIT Numer. Math. 28(4), 877–883 (1988). https://doi.org/10.1007/bf01954907

    Article  MathSciNet  MATH  Google Scholar 

  38. Antonana, M., Makazaga, J., Murua, A.: New integration methods for perturbed ODEs based on symplectic implicit Runge–Kutta schemes with application to solar system simulations. J. Sci. Comput. 76(1), 630–650 (2018). https://doi.org/10.1007/s10915-017-0634-1

    Article  MathSciNet  MATH  Google Scholar 

  39. Hong, J., Huang, C., Wang, X.: Symplectic Runge-Kutta methods for Hamiltonian systems driven by Gaussian rough paths. Appl. Numer. Math. 129, 120–136 (2018). https://doi.org/10.1016/j.apnum.2018.03.006

    Article  MathSciNet  MATH  Google Scholar 

  40. Liu, X., Frank, J.: Symplectic Runge-Kutta discretization of a regularized forward-backward sweep iteration for optimal control problems. J. Comput. Appl. Math. 383, 10 (2021). https://doi.org/10.1016/j.cam.2020.113133

    Article  MathSciNet  MATH  Google Scholar 

  41. Pan, Y., He, Y., Mikkola, A.: Accurate real-time truck simulation via semirecursive formulation and Adams-Bashforth-Moulton algorithm. Acta Mech. Sin. 35(3), 641–652 (2019). https://doi.org/10.1007/s10409-018-0829-1

    Article  MathSciNet  Google Scholar 

  42. Torkan, E., Pirmoradian, M., Hashemian, M.: Instability inspection of parametric vibrating rectangular Mindlin plates lying on Winkler foundations under periodic loading of moving masses. Acta Mech. Sin. 35(1), 242–263 (2019). https://doi.org/10.1007/s10409-018-0805-9

    Article  MathSciNet  Google Scholar 

  43. Cohen, D., Owren, B., Raynaud, X.: Multi-symplectic integration of the Camassa-Holm equation. J. Comput. Phys. 227(11), 5492–5512 (2008). https://doi.org/10.1016/j.jcp.2008.01.051

    Article  MathSciNet  MATH  Google Scholar 

  44. Gong, Y., Cai, J., Wang, Y.: Some new structure-preserving algorithms for general multi-symplectic formulations of Hamiltonian PDEs. J. Comput. Phys. 279, 80–102 (2014). https://doi.org/10.1016/j.jcp.2014.09.001

    Article  MathSciNet  MATH  Google Scholar 

  45. Cai, J., Wang, Y., Jiang, C.: Local structure-preserving algorithms for general multi-symplectic Hamiltonian PDEs. Comput. Phys. Commun. 235, 210–220 (2019). https://doi.org/10.1016/j.cpc.2018.08.015

    Article  MathSciNet  Google Scholar 

  46. Chen, C., Hong, J., Sim, C., et al.: Energy and quadratic invariants preserving (EQUIP) multi-symplectic methods for Hamiltonian wave equations. J. Comput. Phys. 418, 10 (2020). https://doi.org/10.1016/j.jcp.2020.109599

    Article  MathSciNet  Google Scholar 

  47. Preissmann, A.: Propagation des intumescences dans les canaux et rivieres. In: First Congress French Association for Computation, Grenoble 1961, pp. 433–442

  48. Zhao, P.F., Qin, M.Z.: Multisymplectic geometry and multisymplectic Preissmann scheme for the KdV equation. J. Phys. A 33(18), 3613–3626 (2000). https://doi.org/10.1088/0305-4470/33/18/308

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (Grants 11972284 and 11872303), the Fund for Distinguished Young Scholars of Shaanxi Province (2019JC-29), the Fund of the Youth Innovation Team of Shaanxi Universities, and the Open Foundation of State Key Laboratory of Structural Analysis of Industrial Equipment (Grant GZ19103). The authors declare that they have no conflict of interest with the present manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weipeng Hu.

Additional information

Executive Editor: Qiang Tian

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, W., Huai, Y., Xu, M. et al. Coupling dynamic characteristics of simplified model for tethered satellite system. Acta Mech. Sin. 37, 1245–1254 (2021). https://doi.org/10.1007/s10409-021-01108-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-021-01108-9

Keywords

Navigation