Skip to main content
Log in

Fracture mechanics of methane clathrate hydrates

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

Fundamental mechanics of gas hydrates is of importance to evaluating geomechanical and geotechnical properties of gas hydrate deposits, but it remains largely unexplored yet due to insufficient direct experimental techniques and high-quality of gas hydrate samples. Here, classic molecular dynamic (MD) simulations are used to study the fracture mechanics of three main methane clathrate hydrates of sI, sII and sH types. The results show that the mechanical properties of those three methane clathrate hydrates are intrinsically different and are degraded by the presence of nanocracks. They show brittle facture and different fracture toughness. In terms of energy release rate, they are ranked as \(\text {sH}\!\!>\!\!\text {sI}>\!\!\text {sII}\). Moreover, the three methane clathrate hydrates with nanocracks can be explained by a modified Griffith criterion. Moreover, it is intriguingly identified tip amorphization during the crack propagation process of the three methane clathrate hydrates, and sH methane clathrate hydrate with specific nanocrack exhibits slower crack propagation than other two methane clathrate hydrates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Atig, D., Broseta, D., Pereira, J.M., et al.: Contactless probing of polycrystalline methane hydrate at pore scale suggests weaker tensile properties than thought. Nat. Commun. 11, 1–9 (2020)

    Article  Google Scholar 

  2. Wu, Y., Hyodo, M., Cui, J.: On the critical state characteristics of methane hydrate-bearing sediments. Mar. Pet. Geol. 116, 104342 (2020)

    Article  Google Scholar 

  3. Fu, W., Wang, Z., Zhang, J., et al.: Investigation of rheological properties of methane hydrate slurry with carboxmethylcellulose. J. Pet. Sci. Eng. 184, 106504 (2020)

    Article  Google Scholar 

  4. Peng, Z., Gomberg, J.: An integrated perspective of the continuum between earthquakes and slow-slip phenomena. Nat. Geosci. 3, 599–607 (2010)

    Article  Google Scholar 

  5. Max, M.D., Lowrie, A.: Oceanic methane hydrates: a frontier gas resource. J. Pet. Geol. 19, 41–56 (1996)

  6. Makogon, Y.F., Holditch, S.A., Makogon, T.Y.: Natural gas-hydrates–a potential energy source for the 21st Century. J. Pet. Sci. Eng. 56, 14–31 (2007)

    Article  Google Scholar 

  7. Kvenvolden, K.A.: Gas hydrates–geological perspective and global change. Rev. Geophys. 31, 173–187 (1993)

    Article  Google Scholar 

  8. Max, M.D., Clifford, S.M.: The state, potential distribution, and biological implications of methane in the Martian crust. J. Geophys. Res-Planet. 105, 4165–4171 (2000)

    Article  Google Scholar 

  9. Buffett, B., Archer, D.: Global inventory of methane clathrate: sensitivity to changes in the deep ocean. Earth. Planet. Sci. Lett. 227, 185–199 (2004)

    Article  Google Scholar 

  10. Sveinsson, H.A., Malthe-Sørenssen, A.: Molecular-scale thermally activated fractures in methane hydrates: a molecular dynamics study. Phys. Chem. Chem. Phys. 21, 13539–13544 (2019)

    Article  Google Scholar 

  11. Zhu, C., Jiao, X., Cheng, S., et al.: Visualising fluid migration due to hydrate dissociation: implications for submarine slides. Environ. Geotech. 0, 1–9 (2020)

  12. Zhang, X., Luo, D., Lu, X., et al.: Mechanical properties of gas hydrate-bearing sediments during hydrate dissociation. Acta Mech. Sin. 34, 266–274 (2018)

    Article  Google Scholar 

  13. Kvenvolden, K.A.: Potential effects of gas hydrate on human welfare. Proc. Natl. Acad. Sci. USA 96, 3420–3426 (1999)

    Article  Google Scholar 

  14. Maslin, M., Owen, M., Betts, R., et al.: Gas hydrates: past and future geohazard? Proc. R. Soc. A 368, 2369–2393 (2010)

    Google Scholar 

  15. Ning, F., Yu, Y., Kjelstrup, S., et al.: Mechanical properties of clathrate hydrates: status and perspectives. Energy Environ. Sci. 5, 6779–6795 (2012)

    Article  Google Scholar 

  16. Xu, W., Lowell, R.P., Peltzer, E.T.: Effect of seafloor temperature and pressure variations on methane flux from a gas hydrate layer: comparison between current and late Paleocene climate conditions. J. Geophys. Res. 106, 26413–26423 (2001)

    Article  Google Scholar 

  17. Lambeck, K., Esat, T.M., Potter, E.K.: Links between climate and sea levels for the past three million years. Nature 419, 199–206 (2002)

    Article  Google Scholar 

  18. Becke, A.D.: Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A 38, 3098 (1988)

    Article  Google Scholar 

  19. Stern, L.A., Kirby, S.H., Durham, W.B.: Peculiarities of methane clathrate hydrate formation and solid-state deformation, including possible superheating of water ice. Science 273, 1843–1848 (1996)

    Article  Google Scholar 

  20. Stern, L.A., Kirby, S.H., Durham, W.B.: Polycrystalline methane hydrate: synthesis from superheated ice, and low-temperature mechanical properties. Energy Fuel 12, 201–211 (1998)

    Article  Google Scholar 

  21. Miranda, C.R., Matsuoka, T.: First-principles study on mechanical properties of CH4 hydrate. (2008)

  22. Cao, P., Wu, J., Zhang, Z., et al.: Mechanical properties of methane hydrate: intrinsic differences from ice. J. Phys. Chem. C 122, 29081–29093 (2018)

    Article  Google Scholar 

  23. Daghash, S.M., Servio, P., Rey, A.D.: Elastic properties and anisotropic behavior of structure-H (sH) gas hydrate from first principles. Chem. Eng. Sci. 227, 115948 (2020)

    Article  Google Scholar 

  24. Li, Q., Liu, C.: Molecular dynamics simulation of heat transfer with effects of fluid–Clattice interactions. Int. J. Heat Mass Transf. 55, 8088–8092 (2012)

    Article  Google Scholar 

  25. Zhan, H., Gu, Y.: A fundamental numerical and theoretical study for the vibrational properties of nanowires. J. Appl. Phys. 111, 124303 (2012)

    Article  Google Scholar 

  26. Peng, T., Li, Q., Liu, C.: Accelerated aqueous nano-film rupture and evaporation induced by electric field: a molecular dynamics approach. Int. J. Heat Mass Transf. 94, 39–48 (2016)

    Article  Google Scholar 

  27. Hu, J., Liu, C., Li, Q., et al.: Molecular simulation of thermal energy storage of mixed CO2/IRMOF-1 nanoparticle nanofluid. Int. J. Heat Mass Transf. 125, 1345–1348 (2018)

    Article  Google Scholar 

  28. Sloan, E.D.: Fundamental principles and applications of natural gas hydrates. Nature 426, 353–359 (2003)

    Article  Google Scholar 

  29. Sloan, E.D.: Gas hydrates: review of physical/chemical properties. Energy Fuel 12, 191–196 (1998)

    Article  Google Scholar 

  30. Kirchner, M.T., Boese, R., Billups, W.E., et al.: Gas hydrate single-crystal structure analyses. J. Am. Chem. Soc. 126, 9407–9412 (2004)

    Article  Google Scholar 

  31. Pizzagalli, L., Godet, J., Guénolé, J., et al.: A new parametrization of the Stillinger–CWeber potential for an improved description of defects and plasticity of silicon. J. Phys. 25, 055801 (2013)

    Google Scholar 

  32. Molinero, V., Moore, E.B.: Water modeled as an intermediate element between carbon and silicon. J. Phys. Chem. B 113, 4008–4016 (2009)

    Article  Google Scholar 

  33. Jacobson, L.C., Molinero, V.: A Methane–water model for coarse-grained simulations of solutions and clathrate hydrates. J. Phys. Chem. B 114, 7302–7311 (2010)

    Article  Google Scholar 

  34. Wu, J., Ning, F., Trinh, T.T., et al.: Mechanical instability of monocrystalline and polycrystalline methane hydrates. Nat. Commun. 6, 1–10 (2015)

    Article  Google Scholar 

  35. Cao, P., Ning, F., Wu, J., et al.: Mechanical response of nanocrystalline ice-contained methane hydrates: key role of water ice. ACS Appl. Mater. Interfaces 12, 14016–14028 (2020)

    Article  Google Scholar 

  36. Plimpton, S.: Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1–19 (1995)

    Article  MATH  Google Scholar 

  37. Stukowski, A.: Visualization and analysis of atomistic simulation data with OVITO—the Open Visualization Tool. Modell. Simul. Mater. Sci. Eng. 18, 015012 (2009)

    Article  Google Scholar 

  38. Elfakhakhre, N., Long, N.N., Eshkuvatov, Z.: Numerical solutions for cracks in an elastic half-plane. Acta Mech. Sin. 35, 212–227 (2019)

    Article  MathSciNet  Google Scholar 

  39. Paris, P.C.: A brief history of the crack tip stress intensity factor and its application. Meccanica 49, 759–764 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  40. Benham, P.P., Crawford, R.J., Armstrong, C.G.: Mechanics of Engineering Materials. Longman, Harlow (1996)

    Google Scholar 

  41. Yin, H., Qi, H.J., Fan, F., et al.: Griffith criterion for brittle fracture in graphene. Nano Lett. 15, 1918–1924 (2015)

    Article  Google Scholar 

  42. Irwin, G.R.: Analysis of stresses and strains near the end of a crack traversing a plate. J. Appl. Mech. 24, 361–364 (1997)

    Article  Google Scholar 

  43. Zhao, Y., Peng, X., Huang, C., et al.: Notch effects on deformation of crystalline and amorphous AlN–CA nanoscale study. Ceram. Int. 45, 907–917 (2019)

    Article  Google Scholar 

  44. Ida, Y.: Cohesive force across the tip of a longitudina-shear crack and Griffith’s specific surface energy. J. Geophys. Res. 77, 3796–3805 (1972)

    Article  Google Scholar 

  45. Wang, B., Yu, Y., Lee, Y.J., et al.: Intrinsic nano-ductility of glasses: the critical role of composition. Front. Mater. 2, 11 (2015)

    Article  Google Scholar 

  46. Yu, J., Wang, M., Lin, S.: Probing the soft and nanoductile mechanical nature of single and polycrystalline organic–Cinorganic hybrid perovskites for flexible functional devices. Acs Nano. 10, 11044–11057 (2016)

    Article  Google Scholar 

  47. Liu, N., Hong, J., Pidaparti, R., et al.: Fracture patterns and the energy release rate of phosphorene. Nanoscale 8, 5728–5736 (2016)

    Article  Google Scholar 

  48. Lu, X., Hou, Y., Tie, Y., et al.: Crack nucleation and propagation simulation in brittle two-phase perforated/particulate composites by a phase field model. Acta Mech. Sin. 36, 493–512 (2020)

  49. Anderson, T.L.: Fracture Mechanics: Fundamentals and Applications. CRC Press, Boca Raton (2017)

    Book  MATH  Google Scholar 

  50. Wu, J., Gong, H., Zhang, Z., et al.: Topology and polarity of dislocation cores dictate the mechanical strength of monolayer MoS2. Appl. Mater. Today 15, 34–42 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grants 11772278, 11904300 and 12002350) and the Jiangxi Provincial Outstanding Young Talents Program (Grant 20192BCBL23029). We thank Y. Yu and Z. Xu who are from Information and Network Center of Xiamen University for the technical help of the high-performance computer.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhisen Zhang or Jianyang Wu.

Additional information

Executive Editor: Yuejie Wei.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (docx 1644 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Xu, K., Yang, L. et al. Fracture mechanics of methane clathrate hydrates. Acta Mech. Sin. 37, 1387–1394 (2021). https://doi.org/10.1007/s10409-021-01105-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-021-01105-y

Keywords

Navigation