Skip to main content
Log in

Flow-pattern-altered syntheses of core–shell and hole–shell microparticles in an axisymmetric microfluidic device

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

Droplet-based microfluidics offers unique advantages to create platforms that fabricate functionalized particles with increased accessibility, robustness, and simplicity. Herein we present a three-phase microfluidic device that can control the flow pattern to directly generate either core–shell or hole–shell microparticles. The major benefits of this device are the ease of controlling the morphology of the compound droplets by the flow rates and thus the microstructure of the synthesized microparticles. The transition between flow patterns enables the generation of either core–shell particles or Janus particles in a single device. We further show the versatility of the proposed device in fabrication of functionalized particles: the hole size of the hole–shell microparticle can be fine-tuned while its outer diameter is kept constant, and by adding Fe3O4 nanoparticles into the photocurable phase, the obtained magnetoresponsive microparticle can move rotationally or translationally under an external magnetic field. We anticipate that the present method could facilitate the fabrication of the functional microparticles for diverse applications.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Han, S.W., Choi, S.E., Chang, D.H., et al.: Colloidal pixel-based micropatterning using uniform Janus microparticles with tunable anisotropic particle geometry. Adv. Funct. Mater. 29, 1805392 (2019)

    Google Scholar 

  2. Kamperman, T., Van Loo, B., Gurian, M., et al.: On-the-fly exchangeable microfluidic nozzles for facile production of various monodisperse micromaterials. Lab Chip 19, 1977–1984 (2019)

    Google Scholar 

  3. Lewis, C.L., Choi, C.H., Lin, Y., et al.: Fabrication of uniform DNA-conjugated hydrogel microparticles via replica molding for facile nucleic acid hybridization assays. Anal. Chem. 82, 5851–5858 (2010)

    Google Scholar 

  4. Hayakawa, M., Onoe, H., Nagai, K.H., et al.: Complex-shaped three-dimensional multi-compartmental microparticles generated by diffusional and Marangoni microflows in centrifugally discharged droplets. Sci. Rep. 6, 1–9 (2016)

    Google Scholar 

  5. Anselmo, A.C., Xu, X., Buerkli, S., et al.: A heat-stable microparticle platform for oral micronutrient delivery. Sci. Transl. Med. 11, eaaw3680 (2019)

    Google Scholar 

  6. Zhang, S., Zhou, S., Liu, H., et al.: Pinecone-inspired nanoarchitectured smart microcages enable nano/microparticle drug delivery. Adv. Funct. Mater. 30, 2002434 (2020)

    Google Scholar 

  7. Liu, D., Zhang, H., Fontana, F., et al.: Microfluidic-assisted fabrication of carriers for controlled drug delivery. Lab Chip 17, 1856–1883 (2017)

    Google Scholar 

  8. Liu, X., Yang, H., Liu, Y., et al.: Numerical study of clathrin-mediated endocytosis of nanoparticles by cells under tension. Acta Mech. Sin. 35, 691–701 (2019)

    MathSciNet  Google Scholar 

  9. Geng, Y.H., Ge, X.H., Zhang, S.B., et al.: Microfluidic preparation of flexible micro-grippers with precise delivery function. Lab Chip 18, 1838–1843 (2018)

    Google Scholar 

  10. He, F., Zhang, M.J., Wang, W., et al.: Designable polymeric microparticles from droplet microfluidics for controlled drug release. Adv. Mater. Technol. 4, 1800687 (2019)

    Google Scholar 

  11. Herranz-Blanco, B., Arriaga, L.R., Makila, E., et al.: Microfluidic assembly of multistage porous silicon-lipid vesicles for controlled drug release. Lab Chip 14, 1083–1086 (2014)

    Google Scholar 

  12. Amstad, E., Kim, S.H., Weitz, D.A.: Photo- and thermoresponsive polymersomes for triggered release. Angew. Chem. Int. Ed. 51, 12499–12503 (2012)

    Google Scholar 

  13. Yin, W.S., Yates, M.Z.: Encapsulation and sustained release from biodegradable microcapsules made by emulsification/freeze drying and spray/freeze drying. J. Colloid Interface Sci. 336, 155–161 (2009)

    Google Scholar 

  14. Cheng, P., Wang, X., Feng, C.: Numerical simulation of phosphorus release from resuspended sediment. Acta Mech. Sin. 36, 1191–1201 (2020)

    MathSciNet  Google Scholar 

  15. Lyu, J., Ruan, C., Zhang, X., et al.: Microparticle-assisted precipitation screening method for robust drug target identification. Anal. Chem. 92, 13912–13921 (2020)

    Google Scholar 

  16. Miyata, T., Jige, M., Nakaminami, T., et al.: Tumor marker-responsive behavior of gels prepared by biomolecular imprinting. Proc. Natl Acad. Sci. USA 103, 1190–1193 (2006)

    Google Scholar 

  17. Wu, S., Yang, Y., Jiang, H.: Thinning air–water films stabilized by bacterial particles. Acta Mech. Sin. (2021). https://doi.org/10.1007/s10409-020-01031-5

    Article  Google Scholar 

  18. Song, J.K., Choi, H.J., Chin, I.: Preparation and properties of electrophoretic microcapsules for electronic paper. J. Microencapsul. 24, 11–19 (2007)

    Google Scholar 

  19. Nisisako, T., Torii, T., Takahashi, T., et al.: Synthesis of monodisperse bicolored Janus particles with electrical anisotropy using a microfluidic co-flow system. Adv. Mater. 18, 1152–1156 (2006)

    Google Scholar 

  20. Nisisako, T.: Recent advances in microfluidic production of Janus droplets and particles. Curr. Opin. Colloid Interface 25, 1–12 (2016)

    Google Scholar 

  21. Lan, Y., Yang, L., Zhang, M.C., et al.: Microreactor of Pd nanoparticles immobilized hollow microspheres for catalytic hydrodechlorination of chlorophenols in water. ACS Appl. Mater. Interfaces 2, 127–133 (2010)

    Google Scholar 

  22. Berkland, C., Kim, K.K., Pack, D.W.: Fabrication of PLG microspheres with precisely controlled and monodisperse size distributions. J. Control. Release 73, 59–74 (2001)

    Google Scholar 

  23. Berkland, C., King, M., Cox, A., et al.: Precise control of PLG microsphere size provides enhanced control of drug release rate. J. Control. Release 82, 137–147 (2002)

    Google Scholar 

  24. Chen, W.L., Palazzo, A., Hennink, W.E., et al.: Effect of particle size on drug loading and release kinetics of gefitinib-loaded PLGA microspheres. Mol. Pharm. 14, 459–467 (2017)

    Google Scholar 

  25. Qiu, J., Huo, D., Xue, J., et al.: Encapsulation of a phase-change material in nanocapsules with a well-defined hole in the wall for the controlled release of drugs. Angew. Chem. Int. Ed. 58, 10606–10611 (2019)

    Google Scholar 

  26. Windbergs, M., Zhao, Y., Heyman, J., et al.: Biodegradable core–shell carriers for simultaneous encapsulation of synergistic actives. J. Am. Chem. Soc. 135, 7933–7937 (2013)

    Google Scholar 

  27. Hyun, D.C., Lu, P., Choi, S.I., et al.: Microscale polymer bottles corked with a phase-change material for temperature-controlled release. Angew. Chem. Int. Ed. 125, 10662–10665 (2013)

    Google Scholar 

  28. Kong, T., Liu, Z., Song, Y., et al.: Engineering polymeric composite particles by emulsion-templating: thermodynamics versus kinetics. Soft Matter 9, 9780–9784 (2013)

    Google Scholar 

  29. Iwanaga, S., Saito, N., Sanae, H., et al.: Facile fabrication of uniform size-controlled microparticles and potentiality for tandem drug delivery system of micro/nanoparticles. Colloids Surf. B 109, 301–306 (2013)

    Google Scholar 

  30. Hwang, Y.K., Jeong, U., Cho, E.C.: Production of uniform-sized polymer core–shell microcapsules by coaxial electrospraying. Langmuir 24, 2446–2451 (2008)

    Google Scholar 

  31. Zhang, L., Huang, J., Si, T., et al.: Coaxial electrospray of microparticles and nanoparticles for biomedical applications. Expert Rev. Med. Devices 9, 595–612 (2012)

    Google Scholar 

  32. Shenoy, R., Tibbitt, M.W., Anseth, K.S., et al.: Formation of core–shell particles by interfacial radical polymerization initiated by a glucose oxidase-mediated redox system. Chem. Mater. 25, 761–767 (2013)

    Google Scholar 

  33. Dragosavac, M.M., Vladisavljević, G.T., Holdich, R.G., et al.: Production of porous silica microparticles by membrane emulsification. Langmuir 28, 134–143 (2012)

    Google Scholar 

  34. Wu, H., Ren, Y.K., Hou, L.K., et al.: Fabrication of syntactic foam fillers via manipulation of on-chip quasi concentric nanoparticle-shelled droplet templates. Lab Chip 20, 4600–4610 (2020)

    Google Scholar 

  35. Huang, F., Zhu, Z., Niu, Y., et al.: Coaxial oblique interface shearing: tunable generation and sorting of double emulsions for spatial gradient drug release. Lab Chip 20, 1249–1258 (2020)

    Google Scholar 

  36. Mu, K., Ding, H., Si, T.: Experimental and numerical investigations on interface coupling of coaxial liquid jets in co-flow focusing. Phys. Fluids 32, 042103 (2020)

    Google Scholar 

  37. Jiang, T., Jia, Y., Sun, H., et al.: Dielectrophoresis response of water-in-oil-in-water double emulsion droplets with singular or dual cores. Micromachines 11, 1121 (2020)

    Google Scholar 

  38. Pang, Y., Wang, X., Liu, Z.: Study of droplet flow in a T-shape microchannel with bottom wall fluctuation. Acta Mech. Sin. 34, 632–643 (2018)

    Google Scholar 

  39. Chen, P.W., Erb, R.M., Studart, A.R.: Designer polymer-based microcapsules made using microfluidics. Langmuir 28, 144–152 (2012)

    Google Scholar 

  40. Kim, J.W., Utada, A.S., Fernandez-Nieves, A., et al.: Fabrication of monodisperse gel shells and functional microgels in microfluidic devices. Angew. Chem. Int. Ed. 119, 1851–18554 (2007)

    Google Scholar 

  41. Al Nuumani, R., Bolognesi, G., Vladisavljević, G.T.: Microfluidic production of poly(1,6-hexanediol diacrylate)-based polymer microspheres and bifunctional microcapsules with embedded TiO2 nanoparticles. Langmuir 34, 11822–11831 (2018)

    Google Scholar 

  42. Wang, W., Zhang, M.J., Xie, R., et al.: Hole–shell microparticles from controllably evolved double emulsions. Angew. Chem. Int. Ed. 52, 8084–8087 (2013)

    Google Scholar 

  43. Ekanem, E.E., Zhang, Z.L., Vladisavljevic, G.T.: Facile microfluidic production of composite polymer core–shell microcapsules and crescent-shaped microparticles. J. Colloid Interface Sci. 498, 387–394 (2017)

    Google Scholar 

  44. Kim, D.Y., Jin, S.H., Jeong, S.G., et al.: Microfluidic preparation of monodisperse polymeric microspheres coated with silica nanoparticles. Sci. Rep. 8, 1–11 (2018)

    Google Scholar 

  45. Jo, Y.K., Lee, D.: Biopolymer microparticles prepared by microfluidics for biomedical applications. Small 16, 1903736 (2020)

    Google Scholar 

  46. Lone, S., Kim, S.H., Nam, S.W., et al.: Microfluidic preparation of dual stimuli-responsive microparticles and light-directed clustering. Langmuir 26, 17975–17980 (2010)

    Google Scholar 

  47. Ren, M., Guo, W., Guo, H., et al.: Microfluidic fabrication of bubble-propelled micromotors for wastewater treatment. ACS Appl. Mater. Interfaces 11, 22761–22767 (2019)

    Google Scholar 

  48. Yin, S.N., Wang, C.F., Yu, Z.Y., et al.: Versatile bifunctional magnetic-fluorescent responsive Janus supraballs towards the flexible bead display. Adv. Mater. 23, 2915–2919 (2011)

    Google Scholar 

  49. Kim, S.-H., Kim, J.W., Kim, D.-H., et al.: Enhanced-throughput production of polymersomes using a parallelized capillary microfluidic device. Microfluid. Nanofluid. 14, 509–514 (2013)

    Google Scholar 

  50. Oesterle, A.: Pipette Cookbook 2018: P-97 & P-1000 Micropipette Pullers. Sutter Instrument, Novato (2015)

    Google Scholar 

  51. Nisisako, T., Hatsuzawa, T.: A microfluidic cross-flowing emulsion generator for producing biphasic droplets and anisotropically shaped polymer particles. Microfluid. Nanofluid. 9, 427–437 (2009)

    Google Scholar 

  52. Chu, L.Y., Utada, A.S., Shah, R.K., et al.: Controllable monodisperse multiple emulsions. Angew. Chem. Int. Ed. 119, 9128–9132 (2007)

    Google Scholar 

  53. Nabavi, S.A., Vladisavljević, G.T., Gu, S., et al.: Double emulsion production in glass capillary microfluidic device: parametric investigation of droplet generation behaviour. Chem. Eng. Sci. 130, 183–196 (2015)

    Google Scholar 

  54. Utada, A.S., Lorenceau, E., Link, D.R., et al.: Monodisperse double emulsions generated from a microcapillary device. Science 308, 537–541 (2005)

    Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grants 11832017, 11772343, and 12072350), the Chinese Academy of Sciences Key Research Program of Frontier Sciences (Grant QYZDB-SSW-JSC036), the Chinese Academy of Sciences Strategic Priority Research Program (Grant XDB22040403), and the Beijing Institute of Technology Research Fund Program for Young Scholars.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaodong Chen or Guoqing Hu.

Additional information

Executive Editor: Hong-Yuan Jiang

Supplementary Information

Below is the link to the electronic supplementary material.

(AVI 6437 kb)

(AVI 7564 kb)

(AVI 5010 kb)

(AVI 10015 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, D., Zheng, X., Chen, X. et al. Flow-pattern-altered syntheses of core–shell and hole–shell microparticles in an axisymmetric microfluidic device. Acta Mech. Sin. 37, 1378–1386 (2021). https://doi.org/10.1007/s10409-021-01096-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-021-01096-w

Keywords

Navigation