Skip to main content
Log in

Flux-pinning-induced stress behaviors in a long superconducting slab with central cuboid hole

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

This paper investigates the flux-pinning-induced stress behaviors in a long superconducting slab with a central cuboid hole. The distribution of flux density is analytically derived for the critical current density of Kim model by considering the effects of the hole. The concentration of stress for both of the zero-field cooling (ZFC) and the field cooling (FC) magnetization processes are investigated through numerical simulation by using finite element method. The results indicate the potential failure mode varies with the height-width ratio and the dimensions of the hole. Different to the case of infinite hole height, the stress concentration behavior for the FC process is more critical when the dimensions of the hole are similar. The findings in this paper are useful for understanding of the degrade mechanism of superconductor in service and the design of new system.

Graphic abstract

The flux-pinning-induced stress behaviors in a long superconducting slab with a central cuboid hole was investigated for the critical current density of Kim model by considering the effects of the hole. The results indicate the potential failure mode varies with the height-width ratio and the dimensions of the hole. Different to the case of infinite hole height, the stress concentration behavior for the FC process is more critical when the dimensions of the hole are similar.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Yong, H.D., Jing, Z., Zhou, Y.H.: Crack problem for superconducting strip with finite thickness. Int. J. Solids Struct. 51, 886–893 (2014)

    Article  Google Scholar 

  2. Oka, T., Muraya, T., Kawasaki, N., et al.: Magnetizing of permanent magnets using hts bulk magnets. Cryogenics 52, 27–31 (2012)

    Article  Google Scholar 

  3. Yokoyama, K., Oka, T., Noto, K.: Improvement of a magnetization method on a small-size superconducting bulk magnet system. Physica C 471, 901–904 (2011)

    Article  Google Scholar 

  4. Konstantopoulou, K., Shi, Y., Dennis, A., et al.: Mechanical characterization of gdbco/ag and ybco single grains fabricated by top-seeded melt growth at 77 and 300 k. Supercond. Sci. Technol. 27, 115011 (2014)

    Article  Google Scholar 

  5. Diko, P.: Cracking caused by thermal and transformation stresses in ybco composite superconductors. Int. J. Mater. Prod. Technol. 49, 97–128 (2014)

    Article  Google Scholar 

  6. Diko, P., Krabbes, G.: Macro-cracking in melt-grown ybacuo superconductor induced by surface oxygenation. Supercond. Sci. Technol. 16, 90 (2002)

    Article  Google Scholar 

  7. Ru, Y., Yong, H., Zhou, Y.: Fracture analysis of bulk superconductors under electromagnetic force. Eng. Fract. Mech. 199, 257–273 (2018)

    Article  Google Scholar 

  8. Ren, Y., Weinstein, R., Liu, J., et al.: Damage caused by magnetic pressure at high trapped field in quasi-permanent magnets composed of melt-textured YBa2Cu3O7−δ superconductor. Physica C 251, 15–26 (1995)

    Article  Google Scholar 

  9. Johansen, T., Wang, C., Chen, Q., et al.: Enhancement of tensile stress near a hole in superconducting trapped-field magnets. J. Appl. Phys. 88, 2730–2733 (2000)

    Article  Google Scholar 

  10. Hong, J.S., McErlean, E.P., Karyamapudi, B.M.: A high-temperature superconducting filter for future mobile telecommunication systems. IEEE Trans. Microwave Theo. Tech. 53, 1976–1981 (2005)

    Article  Google Scholar 

  11. Lee, Y., Yu, K., Kwon, H., et al.: A whole-head magnetoencephalography system with compact axial gradiometer structure. Supercond. Sci. Technol. 22, 045023 (2009)

    Article  Google Scholar 

  12. Noudem, J., Meslin, S., Horvath, D., et al.: Fabrication of textured ybco bulks with artificial holes. Physica C 463, 301–307 (2007)

    Article  Google Scholar 

  13. Laurson, L., Santucci, S., Zapperi, S.: Avalanches and clusters in planar crack front propagation. Phys. Rev. E 81, 046116 (2010)

    Article  Google Scholar 

  14. Dai, M., Yang, H.B., Schiavone, P.: Stress concentration around an elliptical hole with surface tension based on the original Gurtin-Murdoch model. Mech. Mater. 135, 144–148 (2019)

    Article  Google Scholar 

  15. Duan, S., Zhang, Z., Wei, K., et al.: Theoretical study and physical tests of circular hole-edge stress concentration in long glass fiber reinforced polypropylene composite. Comp. Struct. 236, 111884 (2020)

    Article  Google Scholar 

  16. Nie, G.J., Zhong, Z., Batra, R.C.: Material tailoring for reducing stress concentration factor at a circular hole in a functionally graded material (FGM) panel. Comp. Struct. 205, 49–57 (2018)

    Article  Google Scholar 

  17. Ikuta, H., Hirota, N., Nakayama, Y., et al.: Giant magnetostriction in Bi2Sr2CaCu2 O8 single crystal in the superconducting state and its mechanism. Phys. Rev. Lett. 70, 2166 (1993)

    Article  Google Scholar 

  18. Johansen, T., Lothe, J., Bratsberg, H.: Shape distortion by irreversible flux-pinning-induced magnetostriction. Phys. Rev. Lett. 80, 4757 (1998)

    Article  Google Scholar 

  19. Johansen, T.H.: Flux-pinning-induced stress and strain in superconductors: case of a long circular cylinder. Phys. Rev. B 60, 9690 (1999)

    Article  Google Scholar 

  20. Qing, G., Mao, J., Liu, Y.: Generalized mixed finite element method for 3D elasticity problems. Acta Mech. Sin. 34, 371–380 (2018)

    Article  MathSciNet  Google Scholar 

  21. Gao, S., Feng, W., Fang, X., et al.: Fracture analysis for a penny-shaped crack problem of a superconducting cylinder in a parallel magnetic field. Physica C 506, 6–11 (2014)

    Article  Google Scholar 

  22. Zhou, Y.H., Yong, H.D.: Crack problem for a long rectangular slab of superconductor under an electromagnetic force. Phys. Rev. B 76, 094523 (2007)

    Article  Google Scholar 

  23. Zeng, J., Zhou, Y.H., Yong, H.D.: Fracture behaviors induced by electromagnetic force in a long cylindrical superconductor. J. Appl. Phys. 108, 033901 (2010)

    Article  Google Scholar 

  24. Feng, W., Gao, S., Liu, L.: Fracture properties of a cylindrical superconductor with a central cross crack. J. Appl. Phys. 113, 203919 (2013)

    Article  Google Scholar 

  25. Chen, H., Yong, H., Zhou, Y.: Xfem analysis of the fracture behavior of bulk superconductor in high magnetic field. J. Appl. Phys. 125, 103901 (2019)

    Article  Google Scholar 

  26. Zhang, Y., Guo, Z.: Numerical computation of central crack growth in an active particle of electrodes influenced by multiple factors. Acta Mech. Sin. 34, 706–715 (2018)

    Article  MathSciNet  Google Scholar 

  27. Lu, X., Hou, Y., Tie, Y., et al.: Crack nucleation and propagation simulation in brittle two-phase perforated/particulate composites by a phase field model. Acta Mech. Sin. 36, 493 (2020)

    Article  MathSciNet  Google Scholar 

  28. Feng, W., Li, Q., Gao, S., et al.: Flux-pinning-induced stress behaviors in a long rectangular superconducting slab with a central rectangular hole. IEEE Trans. Appl. Supercond. 24, 125–133 (2013)

    Article  Google Scholar 

  29. Kasaba, K., Oshida, Y., Hokari, T., et al.: Analysis of the influence of voids and a crack on the ultimate tensile strength of rebco bulk superconductor. Physica C 468, 1415–1418 (2008)

    Article  Google Scholar 

  30. Yang, Y., Wang, X.: Stress and magnetostriction in an infinite hollow superconducting cylinder with a filling in its central hole. Physica C 485, 58–63 (2013)

    Article  Google Scholar 

  31. Yong, H.D., Zhou, Y.H.: Elliptical hole in a bulk superconductor under electromagnetic forces. Supercond. Sci. Technol. 22, 025018 (2009)

    Article  Google Scholar 

  32. McDonald, J., Clem, J.R.: Theory of flux penetration into thin films with field-dependent critical current. Phys. Rev. B 53, 8643 (1996)

    Article  Google Scholar 

  33. Gao, C.F., Kessler, H., Balke, H.: Crack problems in magnetoelectroelastic solids. Part I: exact solution of a crack. Int. J. Eng. Sci. 41, 969–981 (2003)

    Article  Google Scholar 

  34. Wang, Y.Q., Wang, B.L., Wang, K.F., et al.: Effect of temperature-dependent critical current density on the fracture behavior for a rectangular superconducting slab with a center crack. Physica C 556, 36–42 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grants 11872257 and 11572358).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen-Jie Feng.

Additional information

Executive Editor: Hua-Dong Yong

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, QF., Feng, WJ. & Liu, JY. Flux-pinning-induced stress behaviors in a long superconducting slab with central cuboid hole. Acta Mech. Sin. 37, 1255–1263 (2021). https://doi.org/10.1007/s10409-021-01074-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-021-01074-2

Keywords

Navigation