Rarefied gas effect in hypersonic shear flows

Abstract

Recently, as aerodynamics was applied to flying vehicles with very high speed and flying at high altitude, the numerical simulation based on the Navier–Stokes (NS) equations was found that cannot correctly predict certain aero-thermo-dynamic properties in a certain range of velocity and altitude while the Knudsen number indicates that the flow is still in the continuum regime. As first noted by Zhou and Zhang (Science in China, 2015), the invalidity of NS equations for such flows might be attributed to an non-equilibrium effect originating from the combined effects of gas rarefaction and strong shear in the boundary-layer flows. In this paper, we present the scope, physical concept, mathematical model of this shear non-equilibrium effect in hypersonic flows, as well as the way of considering this effect in conventional computational fluid mechanics (CFD) for engineering applications. Several hypersonic flows over sharp bodies and blunt bodies are analyzed by the proposed new continuum model, named direct simulation Monte Carlo (DSMC) data-improved Navier–Stokes (DiNS) model.

Graphic abstract

Recently, as aerodynamics was applied to flying vehicles with very high speed and flying at high altitude, the numerical simulation based on the Navier–Stokes (NS) equations was found that cannot correctly predict certain aero-thermo-dynamic properties in a certain range of velocity and altitude while the Knudsen number indicates that the flow is still in the continuum regime. As first noted by Zhou and Zhang (Science in China, 2015), the invalidity of NS equations for such flows might be attributed to an non-equilibrium effect originating from the combined effects of gas rarefaction and strong shear in the boundary-layer flows. In this paper, we present the scope, physical concept, mathematical model of this shear non-equilibrium effect in hypersonic flows, as well as the way of considering this effect in conventional computational fluid mechanics (CFD) for engineering applications. Several hypersonic flows over sharp bodies and blunt bodies are analyzed by the proposed new continuum model, named direct simulation Monte Carlo (DSMC) data-improved Navier–Stokes (DiNS) model..

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. 1.

    Anderson John, D.J.: Fundamentals of Aerodynamics, 5th edn. McGraw-Hill Education, New York (2010)

    Google Scholar 

  2. 2.

    Chapman, D.R.: Computational aerodynamics development and outlook. AIAA J. 17, 1293–1313 (1979)

    MATH  Google Scholar 

  3. 3.

    Anderson, J.D.: Hypersonic and High-temperature Gas Dynamics, 2nd edn. American Institute of Aeronautics and Astronautics, Reston (2006)

    Google Scholar 

  4. 4.

    Tannehill, J.C., Anderson, D., Pletcher, R.: Computational Fluid Mechanics and Heat Transfer (Computational and Physical Processes in Mechanics and Thermal Sciences), 3rd edn. CRC Press, Boca Raton (2011)

    Google Scholar 

  5. 5.

    Drikakis, D., Kwak, D., Kiris, C.C.: Computational aerodynamics: advances and challenges. Aeronaut. J. 120, 13–36 (2016)

    Google Scholar 

  6. 6.

    Johnson, F.T., Tinoco, E.N., Yu, N.J.: Thirty years of development and application of CFD at Boeing Commercial Airplanes. Seattle Comput. Fluids 34, 1115–1151 (2005)

    MATH  Google Scholar 

  7. 7.

    Wan, Y., Wang, N., Zhang, L., et al.: Applications of multi-dimensional schemes on unstructured grids for high-accuracy heat flux prediction. Acta. Mech. Sin. 36, 57–71 (2020)

    MathSciNet  Google Scholar 

  8. 8.

    Li, Y., Niu, X.D., Yuan, H.Z., et al.: A numerical study for WENO scheme-based on different lattice Boltzmann flux solver for compressible flows. Acta. Mech. Sin. 34, 995–1014 (2018)

    MathSciNet  Google Scholar 

  9. 9.

    Nakata, T., Noda, R., Kumagai, S., et al.: A simulation-based study on longitudinal gust response of flexible flapping wings. Acta. Mech. Sin. 34, 1048–1060 (2018)

    Google Scholar 

  10. 10.

    Zhao, W.G., Zheng, H.W., Liu, F.J., et al.: An efficient unstructured WENO method for supersonic reactive flows. Acta. Mech. Sin. 34, 623–631 (2018)

    MathSciNet  MATH  Google Scholar 

  11. 11.

    Bird, G.A.: The DSMC Method. Create Space Independent Publishing Platform, Publisher City (2013)

    Google Scholar 

  12. 12.

    Shen, C.: Rarefied Gas Dynamics: Fundamentals, Simulations and Micro Flows. Springer, New York (2005)

    Google Scholar 

  13. 13.

    Zhou, H., Zhang, H.: New problems of aerodynamics (in Chinese). Sci. Sin. Phys. Mech. Astronom. 45, 104709 (2015)

    Google Scholar 

  14. 14.

    Colin, S.: Rarefaction and compressibility effects on steady and transient gas flows in microchannels. Microfluid. Nanofluid. 1, 268–279 (2005)

    Google Scholar 

  15. 15.

    Bird, G.A.: Breakdown of transnational and rotational equilibrium in gaseous expansions. AIAA J. 8, 1998–2003 (1970)

    Google Scholar 

  16. 16.

    Boyd, I.D., Candler, G.C.V., Boyd, D., Chen, G., Candler, G.V.: Predicting failure of the continuum fluid equations in transitional hypersonic flows. Phys. Fluids 7, 210–219 (1995)

    MATH  Google Scholar 

  17. 17.

    Wang, W.L., Boyd, I.D.: Predicting continuum breakdown in hypersonic viscous flows. Phys. Fluids 15, 91–100 (2003)

    MATH  Google Scholar 

  18. 18.

    Wang, Z., Bao, L., Tong, B.: Rarefaction criterion and non-Fourier heat transfer in hypersonic rarefied flows. Phys. Fluids 22, 126103 (2010)

    Google Scholar 

  19. 19.

    Chen, P.H., Boyd, I.D.: Assessment of entropy generation rate as a predictor of continuum breakdown. In: Proceedings of the 36th AIAA Thermophysics Conference, June (2003)

  20. 20.

    Canupp, P.W.: The influence of magnetic fields for shock waves and hypersonic flows. In: Proceedings of the 31st AIAA Plasmadynamics and Lasers Conference, p. 2260 (2000)

  21. 21.

    Lockerby, D.A., Reese, J.M., Struchtrup, H.: Switching criteria for hybrid rarefied gas flow solvers. Proc. R. Soc. A Math. Phys. Eng. Sci. 465, 1581–1598 (2009)

    MathSciNet  MATH  Google Scholar 

  22. 22.

    Meng, J., Dongari, N., Reese, J.M., Zhang, Y.: Breakdown parameter for kinetic modeling of multiscale gas flows. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 89, 1–9 (2014)

    Google Scholar 

  23. 23.

    Kara, V., Yakhot, V., Ekinci, K.L.: Generalized Knudsen number for unsteady fluid flow. Phys. Rev. Lett. 118, 1–5 (2017)

    Google Scholar 

  24. 24.

    Bird, G.: Molecular Gas Dynamics and the Direct Simulation of Gas Flows. Oxford University Press, Oxford (1994)

    Google Scholar 

  25. 25.

    Boyd, I.D.: Computation of hypersonic flows using the direct simulation Monte Carlo method. J. Spacecr. Rockets 52, 38–53 (2015)

    Google Scholar 

  26. 26.

    Scanlon, T.J., Roohi, E., White, C., Darbandi, M., Reese, J.M.: An open source, parallel DSMC code for rarefied gas flows in arbitrary geometries. Comput. Fluids 39, 2078–2089 (2010)

    MATH  Google Scholar 

  27. 27.

    Ozawa, T., Suzuki, T., Fujita, K.: Aerodynamic measurements and computational analyses in hypersonic rarefied flows. AIAA J. 52, 3327–3337 (2015)

    Google Scholar 

  28. 28.

    Hadjiconstantinou, N.: Analysis of discretization in the direct simulation Monte Carlo. Phys. Fluids 12, 2634–2638 (2000)

    MATH  Google Scholar 

  29. 29.

    Stefanov, S.K., Boyd, I.D., Cai, C.P.: Monte Carlo analysis of macroscopic fluctuations in a rarefied hypersonic flow around a cylinder. Phys. Fluids 12, 1226–1239 (2000)

    MATH  Google Scholar 

  30. 30.

    Park, J.H., Bahukudumbi, P., Beskok, A.: Rarefaction effects on shear driven oscillatory gas flows: a direct simulation Monte Carlo study in the entire Knudsen regime. Phys. Fluids 16, 317–330 (2004)

    MATH  Google Scholar 

  31. 31.

    Wu, L., White, C., Scanlon, T.J., et al.: Deterministic numerical solutions of the Boltzmann equation using the fast spectral method. J. Comput. Phys. 250, 27–52 (2013)

    MathSciNet  MATH  Google Scholar 

  32. 32.

    Mieussens, L.: Discrete-velocity models and numerical schemes for the Boltzmann–BGK equation in plane and axisymmetric geometries. J. Comput. Phys. 162, 429–466 (2000)

    MathSciNet  MATH  Google Scholar 

  33. 33.

    Sun, Q., Boyd, I.D., Candler, G.V.: A hybrid continuum/particle approach for modeling subsonic, rarefied gas flows. J. Comput. Phys. 194, 256–277 (2004)

    MATH  Google Scholar 

  34. 34.

    Xu, X., Wang, X., Zhang, M., et al.: A parallelized hybrid N-S/DSMC-IP approach based on adaptive structured/unstructured overlapping grids for hypersonic transitional flows. J. Comput. Phys. 371, 409–433 (2018)

    MathSciNet  MATH  Google Scholar 

  35. 35.

    Xu, K., Huang, J.C.: A unified gas-kinetic scheme for continuum and rarefied flows. J. Comput. Phys. 229, 7747–7764 (2010)

    MathSciNet  MATH  Google Scholar 

  36. 36.

    Xu, K., Liu, C.: A paradigm for modeling and computation of gas dynamics. Phys. Fluids 29, 026101 (2017)

    Google Scholar 

  37. 37.

    Guo, Z., Wang, R., Xu, K.: Discrete unified gas kinetic scheme for all Knudsen number flows. II. Thermal compressible case. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 91, 1–15 (2015)

    Google Scholar 

  38. 38.

    Liu, S., Yu, P., Xu, K., et al.: Unified gas-kinetic scheme for diatomic molecular simulations in all flow regimes. J. Comput. Phys. 259, 96–113 (2014)

    MathSciNet  MATH  Google Scholar 

  39. 39.

    Wang, Z., Yan, H.: Unified gas-kinetic particle method for dilute granular flow and its application in a solid jet. Acta. Mech. Sin. 36, 22–34 (2020)

    MathSciNet  Google Scholar 

  40. 40.

    Kolobov, V.I., Arslanbekov, R.R., Aristov, V.V., et al.: Unified solver for rarefied and continuum flows with adaptive mesh and algorithm refinement. J. Comput. Phys. 223, 589–608 (2007)

    MATH  Google Scholar 

  41. 41.

    Li, Z.H., Peng, A.P., Zhang, H.X., et al.: Rarefied gas flow simulations using high-order gas-kinetic unified algorithms for Boltzmann model equations. Prog. Aerosp. Sci. 74, 81–113 (2015)

    Google Scholar 

  42. 42.

    Gorji, M.H., Jenny, P.: Fokker–Planck—DSMC algorithm for simulations of rarefied gas flows. J. Comput. Phys. 287, 110–129 (2015)

    MathSciNet  MATH  Google Scholar 

  43. 43.

    Zhang, J., John, B., Pfeiffer, M., Fei, F., Wen, D.: Particle-based hybrid and multiscale methods for nonequilibrium gas flows. Adv. Aerodyn. 1, 12 (2019)

    Google Scholar 

  44. 44.

    Fei, F., Zhang, J., Li, J., Liu, Z.H.: A unified stochastic particle Bhatnagar–Gross–Krook method for multiscale gas flows. J. Comput. Phys. 400, 108972 (2020)

    MathSciNet  MATH  Google Scholar 

  45. 45.

    Chen, Y., Zhu, Y., Xu, K.: A three-dimensional unified gas-kinetic wave-particle solver for flow computation in all regimes. Phys. Fluids 32, 096108 (2020)

    Google Scholar 

  46. 46.

    Su, W., Zhu, L., Wang, P., et al.: Can we find steady-state solutions to multiscale rarefied gas flows within dozens of iterations? J. Comput. Phys. 407, 109245 (2020)

    MathSciNet  Google Scholar 

  47. 47.

    Maxwell, J.C.: On stresses in rarefied gases arising from inequalities of temperature. Philos. Trans. R. Soc. Lond. 170, 304–308 (1879)

    MATH  Google Scholar 

  48. 48.

    von Smoluchowski, M.: Ueber wärmeleitung in verdünnten gasen. Ann. Phys. Chem. 64, 101–130 (1898)

    MATH  Google Scholar 

  49. 49.

    Gökçen, T., MacCormack, R.W.: Nonequilibrium effects for hypersonic transitional flows using continuum approach. AIAA Paper 89-0461 (1989)

  50. 50.

    Lockerby, D.A., Reese, J.M., Emerson, D.R., et al.: Velocity boundary condition at solid walls in rarefied gas calculations. Phys. Rev. E 70, 017303 (2004)

    Google Scholar 

  51. 51.

    Myong, R.S.: Gaseous slip models based on the Langmuir adsorption isotherm. Phys. Fluids 16, 104–117 (2004)

    MATH  Google Scholar 

  52. 52.

    Lofthouse, A.J., Scalabrin, L.C., Boyd, I.D.: Velocity slip and temperature jump in hypersonic aerothermodynamics. J. Thermophys. Heat Transf. 22, 38–49 (2008)

    Google Scholar 

  53. 53.

    Wu, L.: A slip model for rarefied gas flows at arbitrary knudsen number. Appl. Phys. Lett. 93, 253103 (2008)

    Google Scholar 

  54. 54.

    Greenshields, C.J., Reese, J.M.: Rarefied hypersonic flow simulations using the Navier–Stokes equations with non-equilibrium boundary conditions. Prog. Aerosp. Sci. 52, 80–87 (2012)

    Google Scholar 

  55. 55.

    Le, N.T.P., Roohi, E.: A new form of the second-order temperature jump boundary condition for the low-speed nanoscale and hypersonic rarefied gas flow simulations. Int. J. Therm. Sci. 98, 51–59 (2015)

    Google Scholar 

  56. 56.

    Le, N.T.P., Tran, N.H., Tran, T.N.: Modified patterson temperature jump condition considering viscous heat generation. Int. J. Heat Mass Transf. 126, 1267–1274 (2018)

    Google Scholar 

  57. 57.

    Ewart, T., Perrier, P., Graur, I.A., Meolans, J.G.: Mass flow rate measurements in a microchannel, from hydrodynamic to near free molecular regimes. J. Fluid Mech. 584, 337C356 (2007)

    MATH  Google Scholar 

  58. 58.

    Lockerby, D.A., Reese, J.M.: Capturing the Knudsen layer in continuum-fluid models of nonequilibrium gas flows. AIAA J. 43, 1391–1393 (2005)

    Google Scholar 

  59. 59.

    Chen, J., Ou, J., Zhao, L.: Simulation of hypersonic flows in near-continuum regime using DSMC method and new extended continuum model. In: Proceedings of the AIP Conference Proceedings: 31st International Symposium on Rarefied Gas Dynamics, vol. 2132, p. 100007. AIP Publishing (2019)

  60. 60.

    Burnett, D.: The distribution of velocities in a slightly non-uniform gas. Proc. Lond. Math. Soc. 39, 385–430 (1935)

    MathSciNet  MATH  Google Scholar 

  61. 61.

    Grad, H.: On the kinetic theory of rarefied gases. Commun. Pure Appl. Math. 2, 331–407 (1949)

    MathSciNet  MATH  Google Scholar 

  62. 62.

    Struchtrup, H., Torrilhon, M.: Regularization of Grad’s 13 moment equations: derivation and linear analysis. Phys. Fluids 15, 2668–2680 (2003)

    MathSciNet  MATH  Google Scholar 

  63. 63.

    Gu, X.J., Emerson, D.R.: A high-order moment approach for capturing non-equilibrium phenomena in the transition regime. J. Fluid Mech. 636, 177–216 (2009)

    MathSciNet  MATH  Google Scholar 

  64. 64.

    Le, N.T.P., Xiao, H., Myong, R.S.: A triangular discontinuous Galerkin method for non-Newtonian implicit constitutive models of rarefied and microscale gases. J. Comput. Phys. 273, 160–184 (2014)

    MathSciNet  MATH  Google Scholar 

  65. 65.

    Jiang, Z., Zhao, W., Chen, W., et al.: Computation of shock wave structure using a simpler set of generalized hydrodynamic equations based on nonlinear coupled constitutive relations. Shock Waves 29, 1227–1239 (2019)

    Google Scholar 

  66. 66.

    Chen, J., Zhao, L.: A criterion for the existence of local rarefaction effect in a hypersonic flow field and the corresponding flow characteristics (in Chinese). Acta Aerodyn. Sin. 36, 4–11 (2018)

    Google Scholar 

  67. 67.

    Ou, J., Zhao, L., Chen, J.: Numerical simulation of hypersonic flows with local rarefaction effect (in Chinese). Acta Aerodyn. Sin. 37, 193–200 (2019)

    Google Scholar 

  68. 68.

    Ou, J., Chen, J.: DSMC data-improved numerical simulation of hypersonic flow past a flat plate in near-continuum regime. Comput. Fluids 194, 104308 (2019)

    MathSciNet  MATH  Google Scholar 

  69. 69.

    Ou, J., Chen, J.: Hypersonic aerodynamics of blunt plates in near-continuum regime by improved Navier-Stokes model. AIAA J. 58, 4037–4046 (2020)

    Google Scholar 

  70. 70.

    Lockerby, D.A., Reese, J.M., Gallis, M.A.: Capturing the Knudsen layer in continuum-fluid models of nonequilibrium gas flows. AIAA J. 43, 1391–1393 (2005)

    Google Scholar 

  71. 71.

    Reese, J.M., Zheng, Y., Lockerby, D.A.: Computing the near-wall region in gas micro-and nanofluidics: critical Knudsen layer phenomena. J. Comput. Theor. Nanosci. 4, 807–813 (2007)

    Google Scholar 

  72. 72.

    Lockerby, D.A., Reese, J.M.: On the modelling of isothermal gas flows at the microscale. J. Fluid Mech. 604, 235–261 (2008)

    MathSciNet  MATH  Google Scholar 

  73. 73.

    Dongari, N., Zhang, Y., Reese, J.M.: Modeling of Knudsen layer effects in micro/nanoscale gas flows. J. Fluids Eng. 133, 071101 (2011)

    Google Scholar 

  74. 74.

    Brey, J.J., Santos, A., Dufty, J.W.: Heat and momentum transport far from equilibrium. Phys. Rev. A 36, 2842–2849 (1987)

    Google Scholar 

  75. 75.

    Garzó, V., López de Haro, M.: Nonlinear transport for a dilute gas in steady Couette flow. Phys. Fluids 9, 776–787 (1997)

    Google Scholar 

  76. 76.

    Gallis, M.A., Torczynski, J.R., Rader, D.J., et al.: Normal solutions of the Boltzmann equation for highly nonequilibrium Fourier flow and Couette flow. Phys. Fluids 18, 017104 (2006)

    Google Scholar 

  77. 77.

    Montanero, J.M., Santos, A., Garzó, V.: Monte Carlo simulation of nonlinear Couette flow in a dilute gas. Phys. Fluids 12, 3060–3073 (2000)

    MATH  Google Scholar 

  78. 78.

    Ou, J., Chen, J.: Nonlinear transport of rarefied Couette flows from low-speed to high-speed. Phys. Fluids 32, 112021 (2020)

    Google Scholar 

  79. 79.

    Chen, J., Zhang, J., Ou, J.: Influence of rarefied gas effect on the computation of heat flux (in chinese). Acta Aerodyn. Sin. 37, 691–697 (2019)

    Google Scholar 

  80. 80.

    Tsimpoukis, A., Vasileiadis, N., Tatsios, G., et al.: Nonlinear oscillatory fully-developed rarefied gas flow in plane geometry. Phys. Fluids 31, 67108 (2019)

    Google Scholar 

  81. 81.

    Jiang, G.S., Shu, C.W.: Efficient implementation of weighted ENO schemes. J. Comput. Phys. 126, 202–228 (1996)

    MathSciNet  MATH  Google Scholar 

  82. 82.

    Shu, C.W.: High order weighted essentially nonoscillatory schemes for convection dominated problems. SIAM Rev. 51, 82–126 (2009)

    MathSciNet  MATH  Google Scholar 

  83. 83.

    Liu, X., Zhang, S., Zhang, H.: Development of high-order weighted compact schemes with various difference methods. Comput. Fluids 136, 114–131 (2016)

    MathSciNet  MATH  Google Scholar 

  84. 84.

    Cheng, H.K., Emanuel, G.: Perspective on hypersonic nonequilibrium flow. AIAA J. 33, 385–400 (1995)

    MATH  Google Scholar 

  85. 85.

    Chen, X.X., Wang, Z.H., Yu, Y.L.: Nonlinear shear and heat transfer in hypersonic rarefied flows past flat plates. AIAA J. 53, 413–419 (2015)

    Google Scholar 

  86. 86.

    Vidal, R.J., Bartz, J.A.: Surface measurements on sharp flat plates and wedges in low-density hypersonic flow. AIAA J. 7, 1099–1109 (1969)

    Google Scholar 

  87. 87.

    Tsuboi, N., Matsumoto, Y.: Experimental and numerical study of hypersonic rarefied gas flow over flat plates. AIAA J. 43, 1243–1255 (2005)

    Google Scholar 

  88. 88.

    Ivanov, M.S., Gimelshein, S.F.: Computational hypersonic rarefied flows. Annu. Rev. Fluid Mech. 30, 469–505 (1998)

    MathSciNet  MATH  Google Scholar 

  89. 89.

    Erickson, G.E.: High angle-of-attack aerodynamics. Annu. Rev. Fluid Mech. 27, 45–88 (1995)

    Google Scholar 

  90. 90.

    Huang, W., Ma, L., Wang, Zg, et al.: A parametric study on the aerodynamic characteristics of a hypersonic waverider vehicle. Acta Astronaut. 69, 135–140 (2011)

    Google Scholar 

  91. 91.

    Maslach, G.J., Schaaf, S.A.: Cylinder drag in the transition from continuum to free-molecule flow. Phys. Fluids 6, 315–321 (1963)

    MATH  Google Scholar 

  92. 92.

    Gu, X.J., Barber, R.W., John, B., Emerson, D.R.: Non-equilibrium effects on flow past a circular cylinder in the slip and early transition regime. J. Fluid Mech. 860, 654–681 (2019)

    MathSciNet  MATH  Google Scholar 

  93. 93.

    Private communication in Tianjin (2020)

Download references

Acknowledgements

Prof. Hanxin Zhang is gratefully acknowledged for his combined effort with Prof. Heng Zhou for the initiation of research as presented in this paper, as well as for some fruitful discussions. Ph.D. students Jihui Ou and Chenyue Wang are warmly acknowledged for their essential contributions to the research of hypersonic flows with rarefied gas effects. This work was supported by the National Natural Science Foundation of China (Grant 11802202) and Science and Technology Planning Project of Tianjin Province (Grant 20JCQNJC01240). This work was granted access to the HPC resources of NSCC-Tianjin.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jie Chen.

Additional information

Communicated by Xiao-Jing Zheng.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chen, J., Zhou, H. Rarefied gas effect in hypersonic shear flows. Acta Mech. Sin. 37, 2–17 (2021). https://doi.org/10.1007/s10409-021-01051-9

Download citation

Keywords

  • Rarefied gas effect
  • Hypersonic shear flow
  • Aerodynamics properties
  • Direct simulation Monte Carlo
  • Continuum model