Skip to main content
Log in

Characterizing in situ poroelastic properties of cytoplasm by the translation of a rigid spherical inclusion

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

Poroelasticity of cytoplasm is a rate- and size-dependent biphasic material behavior that reflects the normal activities and pathological states of cells, mainly caused by the migration of fluid molecules and the deformation of porous solid skeleton (protein scaffold). While micro/nano-indentation tests have been extensively used to characterize the poroelasticity of a cell, characterizing the in situ poroelasticity of cytoplasm remains elusive. In this study, based on the theory of the translation of a rigid spherical inclusion, we proposed a new method to characterize the in situ poroelasticity of cytoplasm. Based on data from optical/magnetic tweezers tests, we estimated three key poroelasticity parameters—shear modulus, Poisson ratio and diffusion coefficient—of cytoplasm for a variety of cells, including cardiomyocytes, endothelial cells of bovine capillary, and fibroblasts. The proposed method provides a powerful tool for in situ measurement of poroelastic properties of cytoplasm via optical/magnetic tweezers.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Moeendarbary, E., Valon, L., Fritzsche, M., et al.: The cytoplasm of living cells behaves as a poroelastic material. Nat. Mater. 12, 253–261 (2013)

    Article  Google Scholar 

  2. Hu, J., Jafari, S., Han, Y., et al.: Size- and speed-dependent mechanical behavior in living mammalian cytoplasm. Proc. Natl Acad. Sci. USA 114, 9529–9534 (2017)

    Article  Google Scholar 

  3. Cowin, S.C.: Bone poroelasticity. J. Biomech. 32, 217–238 (1999)

    Article  Google Scholar 

  4. Grabiner, M., Mark, D.: Basic orthopaedic biomechanics. J. Clin. Eng. 16, 119–138 (1998)

    Google Scholar 

  5. Mow, V.C., Holmes, M.H., Lai, W.M.: Fluid transport and mechanical properties of articular cartilage: a review. J. Biomech. 17, 377–394 (1984)

    Article  Google Scholar 

  6. Simon, B.R.: Multiphase poroelastic finite element models for soft tissue structures. Appl. Mech. Rev. 45, 191–218 (1992)

    Article  MathSciNet  Google Scholar 

  7. Lee, S.Y., Pereira, B.P., Yusof, N., et al.: Unconfined compression properties of a porous poly(vinyl alcohol)–chitosan-based hydrogel after hydration. Acta Biomater. 5, 1919–1925 (2009)

    Article  Google Scholar 

  8. Briscoe, B.J., Fiori, L., Pelillo, E.: Nano-indentation of polymeric surfaces. J. Phys. D 31, 2395–2405 (1998)

    Article  Google Scholar 

  9. Chan, E.P., Hu, Y., Johnson, P.M., et al.: Spherical indentation testing of poroelastic relaxations in thin hydrogel layers. Soft Matter 8, 1492–1498 (2012)

    Article  Google Scholar 

  10. Koay, E.J., Shieh, A.C., Athanasiou, K.A.: Creep indentation of single cells. J. Biomech. Eng. 125, 334–341 (2003)

    Article  Google Scholar 

  11. Cao, G., Sui, J., Sun, S.: Evaluating the nucleus effect on the dynamic indentation behavior of cells. Biomech. Model. Mechanobiol. 12, 55–66 (2013)

    Article  Google Scholar 

  12. Alain, K., Jacques, O., Philippe, T.: Estimation of cell Young’s modulus of adherent cells probed by optical and magnetic tweezers: influence of cell thickness and bead immersion. J. Biomech. Eng. 129, 523–530 (2007)

    Article  Google Scholar 

  13. Kuo, S.C., Sheetz, M.P.: Optical tweezers in cell biology. Trends Cell. Biol. 2, 116–118 (1992)

    Article  Google Scholar 

  14. Han, Y.L., Pegoraro, A.F., Li, H., et al.: Cell swelling, softening and invasion in a three-dimensional breast cancer model. Nat. Phys. 16, 101–108 (2020)

    Article  Google Scholar 

  15. Biot, M.A.: General theory of three-dimensional consolidation. J. Appl. Phys. 12, 155–164 (1941)

    Article  Google Scholar 

  16. Eshelby, D.J.: The elastic field outside an ellipsoidal inclusion. Proc. R. Soc. A 252, 561–569 (1959)

    MathSciNet  MATH  Google Scholar 

  17. Eshelby, D.J.: The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc. R. Soc. 241, 376–396 (1957)

    MathSciNet  MATH  Google Scholar 

  18. Walpole, L.J.: A rotated rigid ellipsoidal inclusion in an elastic medium. Proc. Math. Phys. Sci. 433, 179–207 (1991)

    MathSciNet  MATH  Google Scholar 

  19. Selvadurai, S.A.P.: Indentation of a spherical cavity in an elastic body by a rigid spherical inclusion: influence of non-classical interface conditions. Contin. Mech. Thermodyn. 28, 617–632 (2016)

    Article  MathSciNet  Google Scholar 

  20. Chen, X., Li, M., Liu, S., et al.: Translation of a coated rigid spherical inclusion in an elastic matrix: exact solution, and implications for mechanobiology. J. Appl. Mech. 86, 051002 (2019)

    Article  Google Scholar 

  21. Caenn, R.: Composition and Properties of Drilling and Completion Fluids. Tx Gulf Publishing Company, Houston (2017)

    Google Scholar 

  22. Detoumay, E., Cheng, A.H.D.: Fundamentals of Poroelasticity. Elsevier, Amsterdam (1993)

    Google Scholar 

  23. Rice, J.R., Cleary, M.P.: Some basic stress diffusion solutions for fluid-saturated elastic porous media with compressible constituents. Rev. Geophys. 14, 227–241 (1976)

    Article  Google Scholar 

  24. Skempton, A.W.: The pore-pressure coefficients A and B. Geotechnique 4, 143–147 (2015)

    Article  Google Scholar 

  25. Hu, Y., Suo, Z.: Viscoelasticity and poroelasticity in elastomeric gels. Acta Mech. Solida Sin. 025, 441–458 (2012)

    Article  Google Scholar 

  26. Hu, Y., Zhao, X., Vlassak, J.J., et al.: Using indentation to characterize the poroelasticity of gels. Appl. Phys. Lett. 96, 121904 (2010)

    Article  Google Scholar 

  27. Lin, Y.Y., Hu, B.W.: Load relaxation of a flat rigid circular indenter on a gel half space. J. Non-cryst. Solids 352, 4034–4040 (2006)

    Article  Google Scholar 

  28. Guo, M.: Physical Nature of Cytoplasm. Doctoral Dissertation, Harvard University, 2014

  29. Chen, L., Maybeck, V., Offenhaeusser, A., et al.: Characterization of the mechanical properties of HL-1 cardiomyocytes with high throughput magnetic tweezers. Appl. Phys. Lett. 107, 053703 (2015)

    Article  Google Scholar 

  30. Mills, J.P., Qie, L., Dao, M., et al.: Nonlinear elastic and viscoelastic deformation of the human red blood cell with optical tweezers. Mech. Chem. Biosyst. 1, 169–180 (2004)

    Google Scholar 

  31. Veigel, C., Bartoo, M.L., White, D.C.S., et al.: The stiffness of rabbit skeletal actomyosin cross-bridges determined with an optical tweezers transducer. Biophys. J. 75, 1424–1438 (1998)

    Article  Google Scholar 

  32. Caille, N., Thoumine, O., Tardy, Y., et al.: Contribution of the nucleus to the mechanical properties of endothelial cells. J. Biomech. 35, 177–187 (2002)

    Article  Google Scholar 

  33. Nijenhuis, N., Zhao, X., Carisey, A., et al.: Combining AFM and acoustic probes to reveal changes in the elastic stiffness tensor of living cells. Biophys. J. 107, 1502–1512 (2014)

    Article  Google Scholar 

  34. O’Brien, E.T., Cribb, J., Marshburn, D., et al.: Magnetic manipulation for force measurements in cell biology. Method Cell Biol. 89, 433–450 (2008)

    Article  Google Scholar 

  35. Matthews, B.D., Overby, D.R., Alenghat, F.J., et al.: Mechanical properties of individual focal adhesions probed with a magnetic microneedle. Biochem. Biophys. Res. Commun. 313, 758–764 (2004)

    Article  Google Scholar 

  36. Zhu, X., Cirovic, S., Shaheen, A., et al.: Investigation of fullerenol-induced changes in poroelasticity of human hepatocellular carcinoma by AFM-based creep tests. Biomech. Model. Mechanobiol. 17, 665–674 (2018)

    Article  Google Scholar 

  37. Morris, E., Mcadams, D.A., Malak, R.: The state of the art of origami-inspired products: a review. In: ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference (2016)

  38. Mollaeian, K., Liu, Y., Bi, S., et al.: Atomic force microscopy study revealed velocity-dependence and nonlinearity of nanoscale poroelasticity of eukaryotic cells. J. Mech. Behav. Biomed. Mater. 78, 65–73 (2018)

    Article  Google Scholar 

  39. Spedden, E., White, J.D., Naumova, E.N., et al.: Elasticity maps of living neurons measured by combined fluorescence and atomic force microscopy. Biophys. J. 103, 868–877 (2012)

    Article  Google Scholar 

  40. Richards, L.A.: Physics of flow through porous media. Soil Sci. Soc. Am. J. 22, 187 (1958)

    Article  Google Scholar 

  41. Sun, S., Feng, S., Ji, C., et al.: Microstructural effects on permeability of nitrocellulose membranes for biomedical applications. J. Membr. Sci. 595, 117502 (2020)

    Article  Google Scholar 

  42. Feldherr, C.M.: Regulation of functional nuclear pore size in fibroblasts. J. Cell Sci. 114, 4621–4627 (2001)

    Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Grants 12032010, 11532009, 11972185, 11902155, and 12002156), the Natural Science Foundation of Jiangsu Province (Grant BK20190382), the Foundation of “Jiangsu Provincial Key Laboratory of Bionic Functional Materials”, China Postdoctoral Science Foundation (Grant 2020M671473), and the Foundation for the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shaobao Liu or Tian Jian Lu.

Additional information

Executive Editor: Hong-Yuan Jiang

Supplementary Information

Below is the link to the electronic supplementary material.

(DOCX 625 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, X., Chen, X., Wang, M. et al. Characterizing in situ poroelastic properties of cytoplasm by the translation of a rigid spherical inclusion. Acta Mech. Sin. 37, 194–200 (2021). https://doi.org/10.1007/s10409-020-01038-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-020-01038-y

Keywords

Navigation